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Abstract

Dynamic detectors for potential data races, based on lockset-intersection tracking, are
widely used to safety-check concurrent programs. But to make this real-world-feasible,
optimisations can be necessary whose validity has so far lacked a solid proof foundation.

We demonstrate that lockset algorithms possess a simple algebraic structure (a commu-
tative monoid), which can simplify the formalisation of optimisations in a proof assistant.

Concurrent programs require synchronisation mechanisms if shared mutable data is to be used
safely. Specifically, unrestricted concurrent mutation easily leads to data races [4], causing data
corruption which can be disastrous yet hard to detect.

Besides approaches such as Software Transactional Memory, the standard mechanism to
avoid this is using locks, which can prevent one thread from proceeding until it is safe to do
so. This can cause its own problems though, in the most extreme deadlock [1] but also simply
missed parallelism opportunities. It is thus desirable to minimise the use of locks, but the
nondeterministic nature of race conditions requires reliably detecting them, to ultimately avoid
them from being possible in production code.

Such detectors come in both static (compile-time) and dynamic (runtime) flavours. We
focus on lockset algorithms as defined in [5] (in the following called Eraser), specifically the
simple lockset algorithm.1 The way this is usually presented is as a state machine on top of
the running program: for each thread t, the set of currently-held locks is updated as locks are
taken or unlocked on that thread. Furthermore, for each shared variable v, a lockset C(v) is
kept as the protecting set. This starts out as the set of all possible locks, and whenever thread
t accesses the variable, it is intersected with the set of lock held by that thread, i.e.

C(v)← C(v) ∩ locks held(t).

If this intersection ever becomes empty, it means a thread has accessed the variable while not
holding any lock that other threads have held to ensure sovereignty over the variable when
accessing it, so the empty set indicates a potential race condition.

Since the detector does not affect the program flow itself, it can (instead of as a
simultaneously-running state machine) as well be formulated to process only a trace of the
program run[3], where “trace” can be understood as just a stream/list of actions

Op =


Lock (t : ThreadId) (l : LockId)

Unlock (t : ThreadId) (l : LockId)

Access (t : ThreadId) (v : VarId)

∗This work was partially supported by the European Horizon 2020 project COEMS under grant agreement
no. 732016 (https://www.coems.eu/).

1 The actual Eraser algorithm has additional states, but these are mostly relevant for initialisation.
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Algebraic formulation. For the actual results of the algorithm (i.e. the protecting sets and
specifically if they become empty), it is not relevant to consider individual locking or unlocking
operations. Rather, it is sufficient to keep track of only the actual lockset states, and even that
only at the times when a variable is accessed (because that will be the set which is intersected
with the protecting set). So instead of a trace of events, one can consider a trace of accesses
together with the lock states: for example, a trace for one thread, one variable, and two locks,
is compressed thus:
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In this diagram, arrows in the top line represent sequencing of the original events in the trace.
In the bottom line, the arrows represent only the transitions between states that actually need
to be considered for the race-condition checking.

The vector notation used here already suggests that it is not really necessary to consider
the states as sets. The intersection operation that the lockset algorithm applies at each access
is but a special case of a pointwise multiplication. So generically, these sets can be seen as an
instance of an algebra or more precisely a ring. Considering only the intersection operation,
it is a monoid, with the universal set (or, vector-of-all-1-s) as unit. This operation will in the
following be written simply as juxtaposition, i.e. sasb ≡ sa ∩ sb.

What the Eraser algorithm does is then left-scanning over the accesses and always applying
the held lockset to the right of the protecting set, with the monoid operation:

→ (( 1
1 ), s0( 1

1 ))→ (( 1
0 ), s0( 1

1 )( 1
0 ))

so starting from s0 = ( 1
1 ), the final state would be

( 1
1 )( 1

1 )( 1
0 ) = ( 1

1 )( 1
0 ) = ( 1

0 ).

For arbitrary locking and access operations, the sequence of relevant checking states becomes

(m0, s0m0)→ (m1, s0m0m1)→ (m2, s0m0m1m2)→ . . .

In the general setting of multiple threads, locks and variables, there needs to be one lockset for
each thread and one protecting set for each variable, so e.g.

→
(
(m0,0,m0,1, . . .), (A

t1
v0

)
)
→
(
(m1,0,m1,1, . . .), (A

t0
v1)
)
→
(
(m2,0,m2,1, . . .), (A

t1
v1)
)

is checked as(m0,0 . . .),

s0,0m0,1

s0,1
...


→

(m1,0 . . .),

 s0m0,1

s0,1m1,0

...


→

(m2,0 . . .),

 s0m0,1

s0,1m1,0m2,1

...


 .

Effectively, after an access to a variable v, its protecting state is a fold over all previous accesses
to v of the lockset state at that time of the corresponding thread.
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Computer-assisted proofs. The folding operation lends itself well to a purely-functional
implementation, which can be in a language such as Coq:

Axiom drcAlgebraic : forall tr v t, let trx := tr ++ [Access t v]

in drc trx

<-> match compressTr trx with

| inl cTr => fold_left pr (map (fun q => fst q (fst (snd q)))

(filter (VId.eqb v ◦ snd ◦ snd) cTr)

) I <> O

| inr _ => False

end.

Here, drc is an abstract notion of what a data-race checker on a trace of events is. The axiom
states that it should be equivalent to our algebraic notion, where I is the all-ones state and
O an all-zeroes state (representing the empty protecting set, i.e. a potential data race). The
algebraic form works on the compressTr form of the trace. This is actually not defined for
arbitrary traces of operations, but only for well-formed traces.2

We propose using this to prove the correctness of commonly used optimizations that com-
press or elide information from the trace only based on the underlying monoid. An advantage
of the algebraic viewpoint is that it decouples the correctness proofs from any concrete data
structure implementing Eraser, as long as an implementation (e.g. through vectors) has the
required algebraic properties. For example, we show that repetition of well-formed blocks with
balanced locks and unlocks does not add new knowledge about data races, and can hence be
elided from the trace:3

Lemma ast_balanced: forall (pre tr post: list op),

balanced tr -> wf (pre++tr++post)

-> forall n, n > 0 -> drc (pre++tr++post) <-> drc (pre++(repeat tr n)++post).

This and other equivalences can then be used to avoid the placement of redundant instru-
mentation (for related work see e.g. [2]) into a system-under-test, and hence through reduced
event generation positively affect the computation time for dynamic data race checking.
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