
Towards Type-Level Model Checking

for Distributed Protocols

Xin Zhao and Philipp Haller

KTH Royal Institute of Technology
Stockholm, Sweden

{xizhao,phaller}@kth.se

Abstract

Developing correct distributed systems is notoriously difficult. Message-passing is a
popular abstraction to simplify their implementation, supported by a number of projects
including Akka and Orleans. However, the verification of these message-passing programs
is still a challenge. There are recent works on type systems for verifying the behavior
of message-passing applications but focused on the process/actor level, keeping system
components such as transaction protocols unverified.

In this paper, we present preliminary work on ProtoMC, a type system that supports
model checking for the correctness of distributed protocols. Our goal for ProtoMC is to
compose processes verified using type-level model checking into protocols such that a well-
typed program can be directly used as a verified implementation for a specific protocol.

1 Motivation

Model-checking is widely used in many distributed protocols such as 2PC, Paxos, and Raft.
However, there might always exist a mismatch between the actual implementation and the
protocol specification that is used for verification. There are works on how to automatically
transform a specification to Implementation; however, due to the different choice of languages,
a comprehensive approach remains elusive. Effpi [3] points out a type-based method that can
specify and verify message-passing applications and ensure the type soundness of the program.

According to our experience in developing distributed systems, a more exciting target is to
verify the implementation of specific protocols and even the composition of several protocol
components. We want to extend Effpi to achieve the goal. However, the verification of complete
protocols and their composition is challenging for three primary reasons: (1) Effpi focuses on
verifying the safety/liveness properties of message-passing programs. [5] points out that 12
out of 15 projects they studied did not entirely stick to the Actor model; thus, the reasoning
about message-passing programs should integrate with other programming and concurrency
paradigms. (2) Effpi uses continuations to manipulate the “future” of the message passing, it
increases the difficulty for developing a Hoare-stype logic reasoning. (3) Composition of verified
protocols is first studied in Disel [4] in 2018 and the technique has improvement space.

2 The ProtoMC Language

ProtoMC is a programming language based on type-level model checking for distributed sys-
tems. In addition to Effpi, we add Hoare logic to check invariants guaranteed by protocols.

Example: a client-server system We write the following Effpi-style code to set up a client-
server system where the server responds to client requests.

85

Towards type-level model checking for protocols Zhao and Haller

1 case class Req(key: Int, replyTo: ActorRef[Resp])

2 case class Resp(key: Int, res: Int, replyTo: ActorRef[Req])

3

4 def client(req: ActorRef[Req], key: Int): Actor[Resp] = {

5 send(req, Req(key, self)) >>

6 read { resp: Resp =>

7 println("Result is: " + resp.res)

8 }

9 }

10

11 def server(): Actor[Req] = {

12 forever {

13 read { req: Req =>

14 send(req.replyTo, Resp(key,f(key),self))

15 }

16 }

17 }

In the above code, a client sends a Req message containing a request key and waits for the
response from the server, and the server returns a response with the same key. Effpi can check
the safety and liveness properties of the client-server system, e.g., whether the server responds
to the client request or not; however, it cannot check whether the client receives the result for
which it previously made a request, i.e., with a matching key. For each command, we create a
Hoare triple {P}S{Q} where P is the precondition, and Q is the postcondition. The variable
pool is to record a set of requests that are going to be replied to, and m represents the received
message. For example in client:

{pool = rs ∧ key ∈ dom(f)}
send(req, Req(key, self)) >>

{pool = (key, req)] rs}

{pool = (key, req)] rs ∧ m = Resp(key,res,req)}
read { resp: Resp =>

println("Result is: " + resp.res)

}

{pool = rs }

We check the precondition for read statements such that the program is only correct if the
received message contains the same key that appears in the pool. In this way, we are able to
check the weak causality of the client protocol.

In order to integrate Hoare triples into a type system, we introduce Hoare types which
augment types with pre- and postconditions.

Core ProtoMC. We propose the syntax for ProtoMC which extends Effpi with separation
logic.

t ::= t t | let x = t in t′ | chan() | p | . . . terms
v ::= λx.t | C | . . . values
C ::= a,b, c . . . channel objects
p ::= end | send(t, t′, t′′) | recv(t, t′) | t||t′ processes
T ::= {P}{Q}τ Hoare types
τ ::= basic types | channel types | process types basic Effpi types

A Hoare type {P}{Q}τ is used to type a computation with a precondition P and a post-
condition Q, computing a result of type τ .

We integrate Hoare types with Effpi’s type system by extending the typing judgement with
an additional predicate. Sent and Received are two auxiliary functions for calculating the state

86

Towards type-level model checking for protocols Zhao and Haller

{P} and {Q} after sending or receiving a message.

Γ ` send(t1, t2, t3) : τ Sent(t1, t2, t3, pr) v (P,Q)

Γ; pr ` send(t1, t2, t3) : {P}{Q}τ
(T-Send)

Γ ` recv(t1, t2) : τ Received(t1, t2, pr) v (P,Q)

Γ; pr ` recv(t1, t2) : {P}{Q}τ
(T-Receive)

3 Challenges

We are still working on completing the semantics of ProtoMC. Here, we list some challenges
for the design and implementation:

• A well-defined type system and complete soundness proof.

• Implementation of a verification system. We are currently devising the implementation
of extended Effpi.

• Case studies for popular distributed protocols such as 2PC, Paxos, and Raft. The focus
would be on creating state invariants for complex protocols.

• Experiments on the performance of such verification tools. We are considering the same
approach as used in previous work, in order to evaluate the overhead and efficiency using
well-known protocol implementations.

4 Related Work

Although session types have been studied for many years, Effpi [3] is one of the few systems
that implement session types and build on top of a solid foundation. However, as we mentioned
in the motivation section, the verification for only message passing is not enough for practical
programs.

Diesel [4] is a type system that first studies the composition of the verified protocols. It
gives us the motivation to extend Effpi with separation logic.

Actris [2] provides a functional correctness proof for concurrent programs with a mix of mes-
sage passing, it is an extension of Iris project [1] which is a higher-order concurrent separation
logic framework implemented and verified in the proof assistant Coq. [6] is another work based
on Iris provides the first completely formalized tool for verification of concurrent programs with
continuations.

References

[1] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer.
Iris from the ground up: A modular foundation for higher-order concurrent separation logic. J.
Funct. Program, 28, article e20, 2018.

[2] Jesper Bengtson Jonas Kastberg Hinrichsen and Robbert Krebbers. Actris: Session-type based
reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL), to appear.

[3] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs with
dependent behavioural types. In Proc. of 40th ACM SIGPLAN Conf. on Programming Language
Design and Implementation, PLDI 2019, pages 502–516. ACM, 2019.

87

Towards type-level model checking for protocols Zhao and Haller

[4] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with distributed
protocols. Proc. ACM Program. Lang., 2(POPL):28:1–28:30, 2018.

[5] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why do scala developers mix the actor
model with other concurrency models? In Giuseppe Castagna, editor, Proc. of 27th European
Conf. on Object-Oriented Programming, ECOOP 2013, volume 7920 of Lecture Notes in Computer
Science, pages 302–326. Springer, 2013.

[6] Amin Timany and Lars Birkedal. Mechanized relational verification of concurrent programs with
continuations. Proc. ACM Program. Lang., 3(ICFP):105:1–105:28, 2019.

88

	Motivation
	The ProtoMC Language
	Challenges
	Related Work

