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1 Introduction
As multi-threaded operating systems are increasingly used in safety-critical settings, verification
and analysis techniques have had to adapt. Different approaches to analyzing concurrent pro-
grams have been proposed, but due to differences in formalism, it is not clear how they relate.
For now, we focus on (abstract) denotational semantics of concurrency via nested fixpoints [Fer-
rara, 2008]. We will reformulate the specific analysis of Miné [2012] in constraint-based form.
We preserve the key ideas, but make some simplifications for the sake of clarity. In particular,
we use the same abstract domain for the analysis as well as the communication between threads.

The use of explicit constraint system variables for thread communication makes the ideas
more clear; in particular, the parallels with rely-guarantee reasoning is transparent in our
formulation. There are, however, also practical advantages (as well as drawbacks) to constraint-
based static analysis. Mainly, as more intermediate values are preserved, it is easier to proceed
with incremental analysis. The drawback is increased memory consumption.

2 Concrete Thread-Modular Semantics
We consider programs as flow graphs: a set of nodes N and edges E of the form pu, s, vq
where u and v are the program points in N and s is an elementary instruction, i.e., either an
assignment or a conditional guard. There is also a dedicated elementary edge that initializes the
program. These instructions manipulate sets of program states, each state being an environment
mapping from variables to integers; this set we denote with ρ P D “ PpV Ñ Nq. We assume
the semantics of an instruction s is given by vsw : D Ñ D. We describe the set of states ρu that
reach a program point u as the least solution to the following constraint system:

ρu Ě vswρv pu, s, vq P E

In the concurrent setting, we assume we are given a set of threads T and each t P T has
its own flow graph pNt, Etq. The concrete semantics of a (sequentially consistent) concurrent
program can be given as the non-deterministic execution of all thread interleavings, but here we
immediately give a more thread-modular, yet concrete, view of interleaving semantics suggested
in a subsequent paper by Miné [2014]. We encode the control state within the mappings ρ by
having dedicated program counter variables pct, so that ρppctq returns the (unique ID in N
associated with) the program point in Nt that thread t will execute next. We can then apply
vsw to these extended states, leaving the program counters untouched. The essence of the
thread-modular view is that for each thread t, the effect of its execution is given by a function
It : D Ñ D. With this function, the constraint system for concurrent programs remains almost
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unchanged:

ρv Ě vswρu pu, s, vq P Et (1)
ρu Ě tσ P It1pρuq | σppctq “ uu u P Nt, t

1 ‰ t (2)

In addition to local steps (1), we take into account the effect of other threads at each program
point (2). The second constraint relies on the program counter variables to restrict influences.
Given a complete description of the interference from other threads, the above system thus
computes the interleaving semantics. Now, this interference can also be successively built by
adding the following constraint:

It Ě tpσ, σ
1q | σ P ρu, σ

1 P vswρvu pu, s, vq P Et (3)

The idea is to solve this in a nested fashion by first stabilizing the first two equations and then
propagating the effect to other threads. This nesting is more evident in the denotational form
[Miné, 2014], but the key point is that we can now understand different abstractions of con-
current communication by considering more abstract representations of the thread-interference
space D Ñ D.

3 Interference Abstraction and Global Invariants
In this abstract, we will consider only the abstraction used in the original paper [Miné, 2012].
This is obtained by flow-insensitive and non-relational abstraction of communications. Thus,
control variables are forgotten and thread effects are collapsed to variables mapping to their
updated values, i.e., V Ñ PpNq. Using this abstraction, we can write the constraints more
informatively by using auxillary constraint variables R and G that highlight the correspondence
to rely-guarantee reasoning:

ρu Ě Rt u P Nt (4)
Gtpxq Ě ρupxq p_, s, uq P Et, x P writes (5)

ρv Ě vswρu pu, s, vq P Et (6)
Rt Ě Gt1 t1 ‰ t (7)

Each thread t can rely on what is guaranteed by all other threads, as expressed by the last
constraint and enforced upon each program point by the first. The guarantee of a thread is
computed by the second constraint, which only takes into account the values written at a given
program point. This system is sound and no less precise than the formulation by Miné [2012],
which applies the thread influences lazily; however, we can show that whenever expressions are
evaluated, the results will coincide.

4 Scheduling Abstraction and Privatization
For priorities and mutexes, we follow the scheduler model of Miné [2012]. There are a fixed
number of threads with unique priorities. The scheduler runs the thread with highest priority
that is ready. We have lock, unlock, and yield instructions that can make threads not ready. We
have previously proposed a constraint-based formulation based on privatization [Vojdani et al.,
2016] for a simpler concurrency model. We track for each variable x, the set of mutexes always
held whenever accessing x. This set is stored in Λpxq. We further assume a sound must-lockset
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analysis is given that handles locks and unlocks, such that the set of locks definitely held at a
given program point u is given by lockspρuq. We can then treat shared variables protected by
locks as thread-local within critical sections. Let us attempt to use privatization to express the
scheduling-sensitive analysis of Miné [2012] in constraint-based form.

Λpxq Ď lockspρuq p_, s, uq P Et, x P writes (8)
ρupxq Ě Rtpxq u P Nt, lockspρuq X Λpxq “ H (9)
Gtpxq Ě ρupxq p_, s, uq P Et, x P writes, lockspρuq X Λpxq “ H (10)

ρv Ě vswρu pu, s, vq P Et (11)
Rt Ě Gt1 t1 ą t (12)
ρv Ě Gt1 pu, s, vq P Et, s P tyield, locku, t

1 ‰ t (13)

This system is sound with respect to the concrete scheduling semantics of Miné [2012]; however,
his abstract semantics is more precise as thread communication is propagated in and out of
critical sections in a pair-wise fashion. If two threads protect communication via a common
lock, but a third thread does not, we would no longer privatize this variable, thereby computing
influences between all threads. A more faithful representation of the interference-based approach
would be possible if we compute Rely-Guarantee invariants depending on the sets of held
mutexes. This remains as future work.

On the other hand, we are more precise by only consider flow-insensitive influence from
higher-priority threads, except at yield and locking instructions where a lower-priority thread
can potentially influence a higher-priority thread. It is not clear to us why Miné [2012] ignores
priorities in influences.

5 Weak Memory Consistency

These flow-insensitive abstractions are fairly imprecise with respect to the sequentially con-
sistent semantics. Since many architectures provide weaker consistency guarantees, flow-
insensitive abstractions are a good starting point for analyzing programs running on modern
architectures. We previously claimed that our multithreaded analysis is sound with respect
to the Linux kernel’s memory model Vojdani et al. [2016], but we provided no rigorous proof.
Suzanne and Miné [2018] have considered TSO and PSO models more rigorously. Our goal is to
compare these abstractions as well as partial-order reduction techniques from model-checking
for the analysis of concurrent programs communicating over weakly consistent memory.
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