
Towards Automatic Verification of C Programs with Heap

Zafer Esen and Philipp Rümmer

Dept. of IT, Uppsala University, Sweden; {zafar.esen,philipp.ruemmer}@it.uu.se

Abstract

Programs containing dynamic data structures pose a challenge for static verification,
because the shape of data-structures has to be reconstructed, and invariants involving
unboundedly many heap locations have to be found. In previous work in the context
of the Java model checker JayHorn, a simple Horn encoding through object invariants
has been proposed to model programs with heap. This abstract presents ongoing work on
TriCera, a model checker for C programs with a similar representation of heap interactions.

1 Introduction

Effective handling of heap-allocated data-structures is one of the main challenges in automatic
verification approaches such as software model checking. In order to verify programs operating
on such data-structures, a verification tool has to analyse the shape of the data-structures
(which is usually not explicitly expressed in a program), and also has to find data invariants
that cover an unbounded number of heap locations. A plethora of approaches to address this
challenge has been developed over the years; for instance, separation logic [5] provides a general
verification methodology, but has mostly been successful in interactive verification systems.
In software model checkers, the most common solution is to use a low-level representation of
heap as an array; this necessitates quantified invariants to verify programs with unbounded
data-structures, which in itself is a challenging research problem.

A different methodology, inspired by refinement type systems [2] and based on instance in-
variants associated with the various classes in a program, is used in the Java model checker
JayHorn [4]. The model checker TriCera1, presented in this abstract, applies a similar heap rep-
resentation to verify C programs, but extends the method to handle also language features not
present in Java: among others, pointers to stack-allocated data, and primitive heap-allocated
data like integers.

The architecture of TriCera is given in Figure 1. TriCera encodes all programs as sets of
Horn clauses, and then uses Eldarica [3] as its backend to try and solve these. This means that
state invariants, function contracts, and object invariants are all computed automatically by
the Horn solver; in the end, making the whole process fully automatic.

Horn
EncoderC parser

C
Program

ELDARICA

TriCera

SAFE

UNSAFE

Type Checking &
Symbol Resolution

Horn Clause
Simplifier

Figure 1: TriCera Architecture

1https://github.com/uuverifiers/tricera

18

https://github.com/uuverifiers/tricera

Towards automatic verification of C programs with heap Esen and Rümmer

1 typedef struct S1 {int f;} S1;

2 typedef struct S2 {int f1 , f2;} S2;

3
4 S1 *s1_1 = calloc(sizeof(S1));

5 S1 *s1_2 = calloc(sizeof(S1));

6 S2 *s2 = calloc(sizeof(S2));

7 s1_1 ->f = 42; //push operation

8 int t = s1_1 ->f; //pull operation

9
10 assert(t == 0 || t == 42);

Figure 2: A simple C program.

1 typedef struct S1 {int f;} S1;

2 typedef struct S2 {int f1 , f2;} S2;

3
4 S1 *s1_1 = H++; // allocation S1

5 push(s1_1 , S1(0)); //push from calloc

6 S1 *s1_2 = H++; // allocation S1

7 push(s1_2 , S1(0)); //push from calloc/

8 S2 *s2 = H++; // allocation S2

9 push(s2, S2(0,0)); //push from calloc

10 push(s1_1 , S1(42); //push from assignment

11 S1 pulled = pull(s1_1);

12 int t = pulled.f

13
14 assert(t == 0 || t == 42);

Figure 3: A simple C program where heap interac-
tions are replaced with push and pull operations.

2 Heap Encoding Using Invariants

Instead of modeling each data item precisely, a heap invariant (φType) is used to represent
each data type on the heap. These invariants capture the properties of the data type they
correspond to. They are symbolic place-holders, which are later computed automatically by
the Horn solver. Interactions with the heap are done via push and pull operations which use
these invariants.

Figure 2 shows a very simplistic C program, and Figure 3 shows its reduced version where
heap related operations are automatically replaced with push and pull operations. These
operations are then reduced into assert and assume statements using the replacement rules
given below. The final translation into Horn clauses then follows, which is straightforward.

y = pull(x) ; {assume(φType(ptr, xfresh)); y = xfresh;}
push(ptr, val) ; assert(φType(ptr, val))

C structs are encoded using the theory of algebraic data types (ADTs), meaning that they
are represented by a single value on the heap similarly to primitive data types.

Figure 4 shows how the heap would look like for the simple program given in Figure 2, and
Figure 5 shows how the heap is encoded using invariants. The properties of the objects of same
type are captured by the same invariant, as in the case of S1.

Memory allocation, in the example using calloc2, is done by assigning the value of the
heap counter H to the pointer variable, and then incrementing the value of the counter. A zero
initialized value is also pushed to that location in the case of calloc.

Assigning to a variable on the heap can be seen as updating its property, thus the heap
invariant must now satisfy the new property as well. This means that the push operation
asserts the heap invariant using the newly assigned value. On the other hand, reading from
the heap can be done by creating a fresh variable which satisfies the properties associated with
that type, by assuming that the heap invariant holds with this new variable as its argument.

3 Experiments and Results

A total of 114 benchmarks were used to evaluate the initial performance of TriCera. The
benchmarks were chosen from files located under the ReachSafety-Heap and MemSafety-Heap
categories of SVCOMP’193, and which did not contain unsupported constructs such as arrays.

2This differs from the standard C calloc function by having no argument for the number of items, as arrays
are currently not supported in TriCera.

3https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp19

19

https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp19

Towards automatic verification of C programs with heap Esen and Rümmer

S1 *s1 1

heap

S1 *s1 2

S2 *s2 〈f1..fn〉

〈f1..fn〉

〈f1..fn〉

Figure 4: Heap representation as a partial
function which maps locations to values

S1 *s1 1

S1 *s1 2

S2 *s2

inv S1

inv S2

Figure 5: Heap invariants which are
created for each type

The benchmark programs are provided as inputs to both TriCera (v0.1) and CPAchecker
(v1.8), using the default settings of the tools.

With a timeout of 5 minutes, TriCera could verify 25 (8 safe and 17 unsafe) out of 114
programs in 11 minutes. The rest of the programs were flagged as unsafe due to the imprecision
of the current heap encoding. For comparison, CPAchecker [1] could verify 53 (40 safe and 13
unsafe) out of 114 programs in 183 minutes. Both tools produced no unsound results.

While TriCera could verify correctly almost half of what CPAchecker could in total, it took
one tenth of the time to do so. However, this was mostly due to CPAchecker timing out trying
to verify tasks, on which TriCera gave up much earlier and produced false alarms. It is expected
that the refinements discussed in Section 4 should reduce the number of these false alarms, while
keeping a similar level of performance with respect to execution time.

4 Conclusions and Future Work

This paper presented the ongoing work with TriCera. The initial results are promising; however,
there are several planned improvements to increase the precision, such as using allocation sites
as done in JayHorn [4] and adding flow sensitivity. There are also plans to to support a wider
subset of the C language, such as arrays and pointer arithmetic.

Since the whole encoding is over-approximate, one cannot directly trust the generated coun-
terexamples. To get a genuine counterexample, the encoding can also be complemented with
an under-approximate encoding, as done in JayHorn.

References

[1] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software verification.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proc. of 23rd Int. Conf. on Computer Aided
Verification, CAV 2011, volume 6806 of Lect. Notes in Comput. Sci., pages 184–190. Springer, 2011.

[2] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proc. of ACM SIGPLAN 1991
Conf. on Program. Language Design and Implementation, PLDI ’91, pages 268–277. ACM, 1991.

[3] Hossein Hojjat and Philipp Rümmer. The ELDARICA Horn solver. In 18th Int. Conf. on Formal
Methods in Computer Aided Design, FMCAD 2018, 7 pp. IEEE, 2018.

[4] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf. Jayhorn: A framework
for verifying java programs. In Swarat Chauduri and Azadeh Farzan, editors, Proc. of 28th Int.
Conf. on Computer Aided Verification, CAV 2016, Part I, volume 9779 of Lect. Notes in Comput.
Sci., pages 352–358. Springer, 2016.

[5] J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of 17th IEEE
Symp. on Logic in Computer Science, LICS 2002, pages 55–74. IEEE, 2002.

20

	Introduction
	Heap Encoding Using Invariants
	Experiments and Results
	Conclusions and Future Work

