
A Formal Framework for Consent Management
Shukun Tokas and Olaf Owe

Department of Informatics, University of Oslo, Norway
{shukunt,olaf}@ifi.uio.no

Introduction
In response to the emerging privacy concerns, the European Union (EU) has approved the Gen-
eral Data Protection Regulation (GDPR) [1] to strengthen and impose data protection rules
across the EU. This regulation requires controllers that process personal data of individuals
within EU and EEA, to process personal information in a ”lawful, fair, and transparent man-
ner”. Article 6 and Article 9 of the regulation [1] provide the criteria for lawful processing,
such as consent, fulfillment of contractual obligation, compliance with a legal obligation etc.
The regulation treats consent as one of the guiding principles for legitimate processing, and
Article 7 [1] sets out the conditions for the processing personal data (when relying on consent).

Consent is defined as “any freely given, specific, informed and unambiguous indication of
the data subject’s wishes by which he or she, by a statement or by a clear affirmative action,
signifies agreement to the processing of personal data relating to him or her” [1]. In particular,
a data subject‘s consent reflects her choices/agreements in terms of the processing of personal
data. These privacy requirements can be expressed through privacy policies, which are used
to regulate the processing of personal data. The privacy requirements in the GDPR (as well
as other privacy regulations) are defined informally, therefore, to avoid ambiguity the policy
language equipped with a formal semantics is essential [2, 3]. We have previously studied static
aspects of privacy policies and policy compliance from a formal point of view, a brief overview
is given in [4]. Here, we look at a formal approach to address consent at the modeling level.

The aim of this work is to design a formal framework for consent management where a
data subject can change her privacy settings through predefined interface definitions, which
could be seen as part of a library system. The data subjects are seen as system users without
knowledge of the underlying program. The framework consists of predefined language constructs
for specifying privacy policies and consent, compliance and consent checking, and a semantics.
We prove a notion of compliance regarding consent. To make a general solution, we consider a
high-level modeling language for distributed service-oriented systems, building on the paradigm
of active objects [5, 6] .

Central to the design of this framework are (a) a policy definition language that allows
specification of privacy policies; (b) a formalization of policy compliance; (c) integration of
privacy policies in a programming language; (d) a run-time system for dynamic checking of
privacy compliance, with built-in consent management. The framework covers essential GDPR
aspects, providing practical means to support for privacy by design (Article 25, Recital 78 [1])
and data subject access request (Article 7, Recital 63 [1]). It is essential that the policy ter-
minology establishes precise link between the law and the program artifacts. For this, we let
privacy policies and consent definitions be expressed in terms of several predefined names, re-
flecting standard terminology (names can be added as needed). Since the data subject is not
always a legal scholar or program developer, it is necessary that the policy terminology used
towards the data subject is simple but with a formal connection to the underlying programming
elements. The rest of this abstract will provide motivation and basic notions related to privacy
and consent specification, but we will omit details for the runtime system.

65

A formal framework for consent management Tokas and Owe

Language Setting
In the setting of active objects, the objects are autonomous and execute in parallel, communi-
cating by so-called asynchronous method invocations. An Object-local data structure is defined
by data types. We assume interface abstraction, i.e., remote field access is illegal and an ob-
ject can only be accessed though an interface. This allows us to focus on major challenges
of modern architectures, without the complications of low-level language constructs related to
the shared-variable concurrency model. The programs we consider are defined by a sequence
of declarations of interfaces (containing method declaration), classes (containing class parame-
ters, fields, methods and an initialization) and data type definitions. Classes are defined by an
imperative language and data types and associated functions by a functional language.

Interfaces may have a number of superinterfaces, letting the predefined interface Any be the
most general interface (supported by any object). We let interface Sensitive be a subinterface of
Any, corresponding to a system component (active object) with personal data. By static check-
ing it is ensured that any object receiving personal data must support the interface Sensitive [4].
And we let interface Principal be a subinterface of Any corresponding to a system user, be it a
person, an organization, or other identifiable actor. Interface Subject is a subinterface of both
Principal and Sensitive, and corresponds to what GDPR refers to as “data subjects”. Interface
Sensitive defines methods for accessing and resetting consented (and default) policies, by the
data subject. Interface Subject offers methods for consent management including functionality
for requesting and updating consent settings.

Runtime aspects
At runtime there will be a number of concurrent objects containing data values (of some type),
and communicating by method calls. Data values with personal information will be tagged.
The tags reflect associated consent information. This meta information is not directly accessible
to the programmer or system user, but is understood by the runtime system, to restrict access
to private data. Our framework includes a general solution for subjects to observe and change
their privacy settings, and a way to delete private data (soft delete). The tags include privacy
information such as identification of the subject, as well as role, purpose and access rights,
specifying who (the roles that can use the data), why (purpose for which the data can be used),
and how (kind of operation or access allowed on the data).

Formalization of Consent and Privacy Policies
We let privacy and consent definitions be expressed in terms of role, purpose and access rights
for a given subject, where each of these range over a set of names, including predefined names
reflecting standard terminology, names can be added as needed. A role is given by a name
such as Doctor, Nurse, Patient, also arranged in a directed acyclic graph with a (transitive
and anti-symmetric) less-than relation <. At the programming level, roles are reflected by
interfaces or Principals. A Principal object may implement multiple interfaces to support
several roles. A purpose is given by a name such as health_care, advertising, treatment, billing,
research. The purpose names are arranged in a directed acyclic graph with a (transitive and
anti-symmetric) less-than relation <, for instance treatment < health_care or research <
health_care. For access-rights we consider a fixed terminology for describing access rights,
with read, incr, self and write access to the data. Access rights are given by a complete lattice,
with t and u as lattice operators, with full (for full access) as top element and no (for no
access) as bottom element. Furthermore, read gives read access, write gives over-write access,
incr gives incremental access (adding an element to a list or set without reading the other

66

A formal framework for consent management Tokas and Owe

A ::= read | incr | write | self basic access rights
| no | full | rincr | wincr abbreviated access rights
| A uA | A tA combined access rights

P ::= (I, R, A) policies
Ps ::= {P∗} | Ps u Ps | Ps t Ps policy sets
CP ::= [S,Ps] | [I,Ps] basic consent declarations
CPs ::= {CP∗} | CPs u CPs | CPs t CPs sets of consent declarations

Figure 1: BNF syntax definition of the policy language. I ranges over interface names, R over
purpose names, and S over data subjects. Superscript ∗ denotes repetition.

purpose treatm, health_care
where treatm < health_care

policy PMyDoc = (”dr.Hansen”, treatm, full) // specific policy

policy PDoc = (Doctor, treatm, rincr) // general policy

policy PNurse = (Nurse, treatm, read) // general policy

consent CPmy = [”Olaf ”, {PMyDoc,PMyDoc,PNurse}] //consent specification

Figure 2: Sample purpose, policy, and consent definitions. Subjects are identified by strings.

elements), and self gives the subject (full) access to data about itself. Thus readt incr gives a
principal read access and incremental access, but not general write access. This is quite useful
in many connections and therefore we introduce rincr, as an abbreviation for it.

The language syntax for defining access rights, privacy policies, and consent is summarized
in Figure 1 and some sample policies are found in Figure 2. A privacy policy P is given
by a who-why-how triple (I, R, A), where I, R and A range over interfaces, purposes and
access rights, respectively, each with their own hierarchy, following [4]. Policy sets form a
lattice with t and u as lattice operators and with the empty set as the bottom element. A
consent specification on data is given by the subject identity and a set of who-why-how policies
and have the form {Subject, {P∗}}. For example, we may specify consent for a patient p by
{p, {(Doctor, treatm, rincr), (Nurse, treatm, read)}}. Private data in general is tagged with a
single consent declaration, assuming the data concern the privacy of a single data subject.

References
[1] European Commission. The General Data Protection Regulation (GDPR) regulations of the Euro-

pean Parliament and of the Council. Accessed 28 Apr. 2019.
[2] R. Pardo and D. L. Métayer. Analysis of privacy policies to enhance informed consent. arXiv

preprint arXiv:1903.06068, 2019.
[3] D. Le Métayer. Formal methods as a link between software code and legal rules. In G. Barthe, A.

Pardo, G. Schneider, editors, Proc. of 9th Int. Conf. on Software Engineering and Formal Methods,
SEFM 2011, volume 7041 of Lecture notes in Computer Science, pp. 3–18. Springer, 2011.

[4] S. Tokas, O. Owe, and T. Ramezanifarkhani. Language-based mechanisms for privacy by design. In
Revised Selected Papers from 14th IFIP Int. Summer School on Privacy and Identity Management,
IFIP Advances in Inform. and Commun. Techn.. Springer, to appear.

67

A formal framework for consent management Tokas and Owe

[5] O. Nierstrasz. A tour of Hybrid—a language for programming with active objects. In Advances in
Object-Oriented Software Engineering, pp. 67–182. Prentice-Hall, 1992.

[6] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concurrent
objects. Softw. Syst. Modeling, 6(1):39–58, 2007.

68

