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Abstract
In this work we reconsider the concept of shared futures as used in the setting of asyn-

chronous method-oriented communication. The future mechanism offers some advantages
such as decoupling of method invocation from retrieval of the result, and sharing of the
result. However, it also has some drawbacks, including the need of garbage collection and
poor privacy protection. We here suggest a more general and more expressive notion than
futures, but without the two mentioned drawbacks. We use the term history objects for this
new concept since it encapsulates past communications in addition to the information nor-
mally found in futures. We argue that the suggested new concept has several advantages,
including support of functionalities found in smart contracts.
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Introduction
We reconsider the future concept, which has become popular in the setting of concurrent ob-
jects (or agents) communicating asynchronously. This setting is adopted in the active object
paradigm, supported by several languages [2]. Remote method calls are handled by message
passing and the result of a method invocation is placed in a future object, at which time the
future is said to resolved. The caller generates a reference to the future object and this reference
may be passed to other objects. Any object with a reference to the future object may ask for the
value, typically via a get statement, which will block when the future is not yet resolved (some
languages allow polling to check if a future is resolved). The main advantages of the future
mechanism are improved flexibility compared to the traditional blocking remote call mecha-
nism, delaying or avoiding the blocking, and providing safe sharing of results since a future is a
write-once, multiple-read data store. Without polling the future mechanism is race-free, since a
get operation waits while the future value is not there. Polling, would make an object sensitive
to the speed of object in the environment (something which is often acceptable).

However, it is not trivial to detect when a future can be discarded; and as many futures
may be generated, garbage collection is in general needed. In the active object paradigm, this
is a clear disadvantage since the active objects themselves have a long life time. If local data
inside objects is defined by data types, using a functional programming language to express and
manipulate values of the data type (such as in the Creol and ABS languages), there is no need
for general garbage collection of these values, assuming storage for values of the data types can
be retrieved efficiently. Another disadvantage of the future mechanism is that the future value
is unprotected, and an object getting the value may not know where the future came from and
what it represents. In particular, privacy aspects are unknown and the information can easily
be misused [4].

In this work we propose a new language construct to reduce these drawbacks. We propose
a “container box” for recording all calls and futures related to the interactions involving a
given object. This “container” will then hold all future values generated by the given object
in the same “box”, including present and past communications. For this reason we will call
it history object. For simplicity we consider one history object for one active object, but one
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could associate several history objects with one object, reflecting the interactions according to
different interfaces of the object. The aim of this abstract is to sketch and motivate this new
language primitive.

History objects
Notation: We consider a syntax similar to that of the Creol/ABS language family [3]. We let
v denote a variable, x a formal parameter (assumed to be read-only), o an object variable (an
object reference), f a future variable (a reference to a future object), e an expression (assumed
to be pure), and m a method. We use capitalized words for types and interfaces, while variable
and method names start with a lower-case character. We use [...] for lists and < ... > for
tuples. The statement syntax v: + e is permitted when v is a list to express that an element
e is appended to the tail of list v. This statement adheres to the write-once discipline since it
cannot change previously written elements.

As is the case in the traditional future concept, we consider three kinds of method calls:
• A blocking call has the syntax v := o.m(e), where o is the callee, m the called method, e

the (input) parameters. The method result will be assigned to v.
• A simple asynchronous call has the syntax o! m(e). The caller is not blocked and the
result value is not communicated to the caller.

• An asynchronous call has the syntax f := o! m(e) where f is a future variable declared
with type Fut[T ] where T is the return type of m. The variable f is assigned a new call
identity (a reference to the future object) uniquely identifying the call. This identity may
be communicated to other objects. The caller is not blocked. In order to obtain the value
returned from the call, the caller object (or another object that knows the future identity)
may perform v := get f where v is a program variable of type T . This statement will
block if the future is not resolved, and otherwise the result value is copied into v.

Consider now our proposed setting (a bit simplified) where we associate a history object,
history(o), to each object o called with an asynchronous call. We allow the same call op-
erations as above. But there are two major differences: In our proposed solution, the same
history object contains all future values generated by a given callee object, including those of
the past as well as future ones. This history object is therefore long-lived and need not be
garbage-collected. However, as the storage need is growing dynamically, the history objects
could be placed in a cloud. The history object could be split over several objects if needed. (In
that case for each function definition in the top level history object, the function value over the
empty history must correspond to the function value over the final history in the underlying
object.)

Secondly, we treat the history objects as normal objects, which means that one may com-
municate with the history objects when desired, using simple or blocking calls. This is following
the spirit of [5]. Moreover, the behavior of the history objects is given by interface declarations,
including a get method corresponding to reading a future value. A predefined class implemen-
tation can be given, and by means of inheritance, this class declaration may be extended and
modified in the same way as other classes. In particular one may add functionality by imple-
menting new interfaces and methods, and one may add protection mechanisms in redefined get
methods to implement security and privacy restrictions. For instance by requiring that the
caller satisfies some conditions. In the case of a two-party contract, we can require that only
the two parties may see the history (through get calls). This means that calls to the history
objects may distinguish their behavior depending on the caller (using the implicit parameter
caller and its interface).
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The predefined history object contains a (private) transaction list

List[Transaction] trans = empty
// restricted by incremental-write/multiple-read access

and a predefined (hidden) put method to be used only by the underlying runtime system for
recording each new message to or from the object by appending it to the transaction list.

Void put(Transaction t) {trans :+ t} //appending t to trans

We allow read access to the transaction list. The transaction corresponding to a call f := o! m(e)
is a tuple of form

< fid, caller, method, par, result >

where fid is a future identity (the value assigned to f), caller is the caller identity, method
is the method name (m), par is the input values (the values of e), and result is the result of
the call, possibly error. This transaction is generated when the call has completed normally
or abnormally (i.e., resulted in an error). The statement return e in the body of a method
m(T x) is executed at runtime by doing history(this).put(< callid, caller, ”m”, [x], e >) where
this refers to the current object, x are the formal parameters, and where callid and caller are
implicit parameters in our setting giving the future identity of the call and the caller object,
respectively. (The put statements do not appear in the program code.) Abnormal termination
results in a put call with result error. Similarly, a history object includes a public get method
T get(Fut[T ] f) for each method result of type T . A get statement is therefore possible in our
setting as a blocking call to get on the appropriate history object.

We observe that the transaction history of an active object as given by its history object,
is sufficient to define the state of the object at the end of a method execution. The state
of an active object at its last method completion can be reconstructed from the transaction
history, and also the pre-state of method execution resulting in error. (Cooperative scheduling
would require more events to be recorded in the trans variables.) We also observe that the
history objects define the transaction history in a faithful way due to the language restriction
on the trans variables by means of incremental-write by the underlying runtime system and
is immutable for others. This restriction is also imposed on subclasses of the history classes.
This means that one may rely on the transaction histories in a way similar to smart contracts.
This is checked statically. If the runtime system also offers protection of unauthorized write
access to these variables by means of a trusted execution environment, one does not need block-
chain technology to guarantee incremental-write/multiple-read access. If not, one may use an
underlying block-chain technology at runtime to obtain full trust. An active object with an
associated history object may be used to accommodate the functionality of a smart contract,
and with immutability of the transaction history guaranteed at the software level. We support
the following aspects of smart contracts:

• Trust is provided by the reliable independent history object.
• Reliability due to the write-once (by the underlying operating system) and multiple-read
access by users.

• A way to formally specify and verify contract requirements as well as invariants using the
communication history and defining functions over the history.

• Roll-back possibility in case a transaction cannot complete.
Further details and examples will be given in an extended version of this paper, where we will
also consider an example of a smart contract for auctions [1].
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