
Study of Recursion Elimination for

a Class of Semi-Interpreted Recursive Program Schemata

Nikolay V. Shilov

Innopolis University, Innopolis, Republic of Tatarstan, Russia
shiloviis@mail.ru

Abstract

We study templates (i.e. control flow structures with uninterpreted functional and
predicate symbols commonly known as program schemata) for descending and ascend-
ing dynamic programming, discuss these templates from programming theory perspective
in terms of translation of recursive program schemata to iterative ones with or without
dynamic memory, suggested sufficient conditions when the recursive template can be trans-
lated into iterative program schemata with fix-size static memory.

More than 50 years passed since the “Golden Age” of Theory of Program Schemata in
1960-70’s. Great computer scientists contributed to these studies: John McCarthy, Edsger
Dijkstra, Donald Knuth, Amir Pnueli... Studies of go-to elimination (structured program
Böhm-Jacopini theorem about a translation of spaghetti-like iterative code to more under-
standable and easier to verify iterative code) and recursion elimination (i.e. how to translate
recursive program schemata and programs to iterative ones) were very popular in 1960-1970’s
[4]. Recursion elimination was very popular because it is about translation from easier to de-
sign and verify declarative code to more efficient imperative code. Many fascinating examples
of recursion elimination have been examined [3, 2, 7] (e.g. tail-recursion that is basically a
recursive variant of go-to). In the paper we study a recursion pattern that doesn’t match
the tail-recursion, but matches well the pattern of Bellman equation, a general form for re-
cursive dynamic programming. We study this pattern of recursive dynamic programming as a
template (i.e. uninterpreted or semi-interpreted program scheme with a variable arity of sym-
bols/functions/predicates) [6], discuss sufficient conditions for the interpretation of functional
and predicate symbols when the recursive scheme may be translated to iterative schemata with
(i) an associative array with a pre-computed size, (ii) an integer array with pre-computed size,
and (iii) a fix-size static memory.

Dynamic Programming was introduced by Richard Bellman in the 1950s to tackle optimal
planning problems. Bellman equation is a name for recursive functional equality for the ob-
jective function that expresses the optimal solution at the “current” state in terms of optimal
solutions at next (changed) states, it formalizes a so-called Bellman Principle of Optimality :
an optimal program (or plan) remains optimal at every stage. In the present paper we study a
class of Bellman equations that matches the following recursive pattern:

G(x) = if p(x) then f(x) elseg

(
x,
{
hi

(
x,G(ti(x))

)
, i ∈ [1..n(x)]

})
(1)

We consider the pattern as a recursive program scheme (or template) [6], i.e. a recursive control
flow structure with uninterpreted symbols:

• G is the main functional symbol representing (after interpretation of ground functional
and predicate symbol) the objective function G : X → Y for some X and Y ;

54

Study of recursion elimination for a class of semi-interpreted recursive program schemata Shilov

• p is a ground predicate symbol representing (after interpretation) some known1 predicate
p ⊆ X;

• f is a ground functional symbol representing (after interpretation) some known1 function
f : X → Y ;

• g is a ground functional symbol representing (after interpretation) some known1 function
g : X × Z∗ → X for some appropriate Z (with a variable arity n(x) : X → N);

• all hi and ti (i ∈ [1..n(x)]) are ground functional symbols representing (after interpreta-
tion) some known1 function hi : X × Y → Z, ti : X → X (i ∈ [1..n(x)]).

In the sequel we do not make an explicit distinction in notation for symbols and interpreted
symbols but just verbal distinction by saying, for example, symbol g and function g.

Let us consider a function G : X → Y that is defined by the interpreted recursive scheme
(1). Let us define two sets bas(v), spp(v) ⊆ X:

• base bas(v) = if p(v) then ∅ else {ti(v) : i ∈ [1..n(v)]} ⊆ X comprises all values that are
immediately needed to compute G(v);

• support spp(v) is the set of all values that appear in the call-tree of G(v).

Note that bas(v) is always finite and if G is defined on v then the support spp(v) is finite. When
G(v) is defined, the support can be computed by the following algorithm:

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)

spp(y)). (2)

Let us specify and verify the following iterative template for/of (ascending) dynamic pro-
gramming :

• Template Applicability Conditions TAC:

1. I is an interpretation for ground symbols in the scheme (1);

2. n : X → N is the arity function of interpreted g;

3. G : X → Y is the objective function, i.e. a solution of the interpreted scheme (1);

4. t1, . . . tn : X → X are functions that computes the base;

5. spp : X → 2X is the support function for G;

6. NiX 6∈ X is a distinguishable fixed indefinite value2 for X;

• Template Pseudo-Code TPC:

1. V AR LUT : assosiative array indexed by spp(v) with values in Y ;

2. LUT := array filled by NiX;

3. for all u ∈ spp(v) do if p(u) then LUT [u] := f(u);

1 i.e. that we know how to compute
2NiX — Non in X, similarly to Non a Number — NaN.

55

Study of recursion elimination for a class of semi-interpreted recursive program schemata Shilov

4. while LUT [v] = NiX do
let u ∈ spp(v) be any element in spp(v)

such that LUT [u] = NiX and
LUT [ti(u)] 6= NiX for all i ∈ [1..n(u)]

in LUT [u] := g

(
u,
{
hi

(
u, LUT [ti(u)]

)
, i ∈ [1..n(u)]

})
.

Note that the template is not a standard program scheme, but a scheme augmented by
associative array (namely LUT).

Proposition 1. Assuming TAC, the following holds for every v ∈ X:

1. if G(v) is defined then interpreted template TPC terminates after |spp(v)| iterations of
both loops, and LUT [v] = G(v) by termination;

2. if G(v) is not defined then interpreted template TPC never terminates.

The advantage of TPC is the use of an associative array that is allocated once instead of a
stack, which is required to translate general recursion. Nevertheless, a natural question arises:
is a finite static memory sufficient when computing this function? Unfortunately, in general,
the answer is no according to the following proposition by M.S. Paterson and C.T. Hewitt [6].

Proposition 2. The following special case of the recursive template (1)

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (i.e. an uninterpreted iterative program
scheme with finite static memory).

Proposition does not imply that dynamic memory is always required; it just says that for
some interpretations of uninterpreted symbols p, f , g and h the size of required memory depends
on the input data. But if p, f , g and h are interpreted, it may happen that function F can be
computed by an iterative program with a finite static memory. For example, Fibonacci numbers

Fib(n) = if (n = 0 or n = 1) then 1 else F ib(n− 2) + Fib(n− 1)

matches the pattern of the scheme in the above proposition 2, but just three integer variables
suffice to compute it by an iterative program.

The following proposition states sufficient conditions when a finite static memory suffices to
compute the recursive function (1).

Proposition 3. Assume that TAC holds altogether with the following additional conditions:

• arity function n : X → N is some constant n ∈ N;

• base functions t1, . . . tn are interpreted in such a way that t1 is invertible and ti = (t1)i

for all i ∈ [1..n];

• interpreted predicate p is t1-closed in the following sense: p(u)⇒ p(t1(u)) for all u ∈ X.

Let m ∈ N be number of static variables that suffice to implement imperative iterative algorithms
to compute interpreted ground predicate and functions p, f , hi (i ∈ [1..n]), t1 and t−1 for any
input value. Then the objective function G may be computed by an imperative iterative algorithm
with 2n + m + 2 static variables.

56

Study of recursion elimination for a class of semi-interpreted recursive program schemata Shilov

(Let us skip a proof of the statement because of space limitations.)
To the best of our knowledge, use of integer arrays for efficient translation of recursive

functions of integer argument was suggested first in [1]. In the cited paper this technique of
recursion implementation was called production mechanism. The essence of the production
mechanism consists in support evaluation (that is a set of integers), array declaration with a
proper index range, and fill-in this array in bottom-up (i.e. ascending) manner by values of
the objective function. Use of auxiliary array was studied also in [5]. The book [5] doesn’t
use templates but translation techniques asymptotically but is more space efficient that our
approach. (For example, if to use techniques from [5], then the length of the longest common
subsequence can be computed in linear space, while our approach needs a quadratic space.)

Nevertheless, a novelty of our study consists in the use of templates (understood as semi-
interpreted program schemata) and sematic sufficient conditions that allow recursive programs
to be computed efficiently by iterative imperative programs (with either an associative array
or just with a finite fixed size static memory).

Acknowledgment

The author thanks the anonymous reviewers and Dr. Daniel De Carvalho for significant com-
ments both in the content and in the language of the article.

References

[1] G. Berry. Bottom-up computation of recursive programs. Theor. Inf. Appl., 10(3):47–82, 1976.

[2] R. S. Bird. Zippy tabulations of recursive functions. In P. Audebaud and C. Paulin-Mohring,
editors, Proc. of 9th Int. Conf. on Mathematics of Program Construction, MPC 2008, volume 5133
of Lecture Notes in Computer Science, pages 92–109. Springer, 2008.

[3] J. Cowles and R. Gamboa. Contributions to the theory of tail recursive functions. 2004. Available
at http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf.

[4] D.E. Knuth. Textbook examples of recursion. arXiv preprint cs/9301113, 1991. Available at https:
//arxiv.org/abs/cs/9301113.

[5] Y. A. Liu. Systematic Program Design: From Clarity to Efficiency. Cambridge University Press,
2013.

[6] M.S. Paterson and C.T. Hewitt. Comperative schematology. In Proc. of ACM Conf. on Concurrent
Systems and Parallel Computation, pages 119–127. ACM, 1970.

[7] N.V. Shilov. Etude on recursion elimination. Modeling and Analysis of Information Systems,
25(5):549–560, 2018.

57

http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf
https://arxiv.org/abs/cs/9301113
https://arxiv.org/abs/cs/9301113

