
Axiomatizing Equivalences over Regular Monitors∗

Luca Aceto1,2, Antonis Achilleos1, Elli Anastasiadi1, Anna Ingólfsdóttir1

1 Dept. of Computer Science, Reykjavik University, Iceland
2 Gran Sasso Science Institute, L’Aquila, Italy

luca@ru.is, luca.aceto@gssi.it, antonios@ru.is, elli19@ru.is, annai@ru.is

Abstract

We study whether recursion-free regular monitors have finite equational axiomatizations
with respect to two notions of equivalence, namely verdict and ω-verdict equivalence.

1 Introduction

Equational axiomatizations provide a purely syntactic description of the chosen notion of equiv-
alence over processes and characterize the essence of a process semantics by means of a few
revealing axioms. We consider a fragment of the regular monitors described and studied by
Aceto et al. in, for instance, [1, 4]. Monitors are a key tool in the field of runtime verification
[3], where they are used to check for system properties by analyzing execution traces generated
by processes.

A monitor is an agent that observes the events occurring in a system as it progresses through
time. Two monitors are verdict equivalent when they characterize exactly the same traces as
successful and failure ones. Similarly they are ω-verdict equivalent when they characterize
the same infinite traces as successful and failure ones. Our goal in this work is to study the
equational theory of those relations. We give a ground complete axiomatization for both of those
equivalences. We also study open equations, provide an (infinite) complete axiomatization for
verdict equivalence and we argue that no finite one exists, even when the set of actions monitors
can analyze is finite. Such negative results are common in the field of process algebra [2]
although they usually occur for more expressive languages.

We present a suitable notion of normal form and use it to reduce the verdict equivalence
problem for closed monitors to equality between normal forms. We also study the complexity
of checking equivalence between two closed monitors and find it to be almost linear (off by a
constant factor) in the size of the syntax tree of the monitors. This result is in contrast with
the coNP -completeness for equality testing between star-free regular expressions [6].

Apart from their intrinsic theoretical interest, axiomatizations such as the ones we present
can form the basis for tools for proving equivalences between monitors using theorem-proving
techniques and identify valid laws of “monitor programming” in the sense of [5]. A complete
axiomatization captures all the valid laws of programming in a model-independent way. Such
laws can, for instance, be used as a set of rewrite rules to bring a monitor into an equivalent but
better (for instance, more succinct or canonical) form. Since monitors are often synthesized
automatically from specifications of monitorable properties, non-optimal representations are
very likely to arise as a result of monitor-synthesis algorithms. The availability of a complete
axiomatization of monitor equivalence indicates that, at least for monitors written in the lan-
guages being axiomatized modulo the chosen notion of equivalence, one can always synthesize
“optimal” monitors.

∗The work reported in this paper is supported by the projects Open Problems in the Equational Logic of Pro-
cesses (OPEL) (grant 196050-051) and ‘TheoFoMon: Theoretical Foundations for Monitorability’ (grant 163406-
051) of the Icelandic Research Fund. Acetos work was also partially supported by the Italian MIUR PRIN
2017FTXR7S project IT MATTERS ‘Methods and Tools for Trustworthy Smart Systems’.

4

Axiomatizing equivalences over regular monitors Aceto, Achilleos, Anastasiadi and Ingólfsdóttir

2 Background

Syntax of monitors Let Act be a set of visible actions, ranged over by a, b. Following
Milner [7], we use τ /∈ Act to denote an unobservable action. We will denote the set of infinite
sequences over Act as Actω. As usual Act∗ stands for the set of finite sequences over Act. Let
Var be a countably infinite set of variables, ranged over by x, y, z.

The collection MonF of regular, recursion-free monitors is the set of terms generated by the
following grammar:

m,n ::= v | a.m | m+ n | x v ::= end | yes | no,

where a ∈ Act and x ∈ Var . The terms end, yes and no are called verdicts. Closed monitors
are those that do not contain any occurrences of variables. For each α ∈ Act ∪ {τ}, we define

the transition relation
α−−→⊆ MonF ×MonF as the least one that satisfies the following rules:

a.m
a−→ m

m
α−−→ m′

m+ n
α−−→ m′

n
α−−→ n′

m+ n
α−−→ n′ v

α−−→ v
.

For s = a1a2 . . . an ∈ Act∗ and n ≥ 0, we use m
s

=⇒ m′ to mean that:

1. m(
τ−→)∗m′ if s = ε, where ε stands for the empty string,

2. m
ε

=⇒ m1
a−→ m2

ε
=⇒ m′ for some m1,m2 if s = a ∈ Act and

3. m
a

=⇒ m1
s′
=⇒ m′ for some m1 if s = a.s′.

If m
s

=⇒ m′ for some m′, we call s a trace of m.

Verdict and ω-Verdict Equivalence Let m be a (closed) monitor. We define:

La(m) = {s ∈ Act∗ | m s
=⇒ yes} and Lr(m) = {s ∈ Act∗ | m s

=⇒ no}.

Note that we allow for monitors that may both accept and reject some trace. This is
necessary to maintain our monitors closed under +. Of course, in practice, one is interested in
monitors that are consistent in their verdicts.

Definition 1. Let m and n be closed monitors. We say that m and n are verdict equivalent,
written m ' n, iff La(m) = La(n) and Lr(m) = Lr(n). We say that m and n are ω-verdict
equivalent, written m 'ω n, iff La(m) ·Actω = La(n) ·Actω and Lr(m) ·Actω = Lr(n) ·Actω.
These equivalences are extended to open monitors in the standard way.

Lemma 1. The following hold: (1) ' and 'ω are both congruences. (2) ' ⊆ 'ω and the
inclusion is strict when Act is finite. (3) If Act is infinite then ' = 'ω.

5

Axiomatizing equivalences over regular monitors Aceto, Achilleos, Anastasiadi and Ingólfsdóttir

• A1: x+ y = y + x

• A2: x+ (y + z) = (x+ y) + z

• A3: x+ x = x

• A4: x+ end = x

• E1a: a.end = end (a ∈ Act)

• Ya: yes = yes+ a.yes (a ∈ Act)

• Na: no = no+ a.no (a ∈ Act)

• D1a: a.(x+ y) = a.x+ a.y (a ∈ Act)

3 Results on axiomatizations and complexity

Our axiom system for verdict equivalence over closed monitors is Eveq, whose axioms are:

Theorem 1. Eveq is complete over closed monitors modulo '. That is if m,n are closed
monitors in MonF and m ' n then Eveq ` m = n. Moreover, Eveq is complete over closed
terms modulo 'ω when Act is infinite.

In order to capture ω-verdict equivalence when Act is finite, we extend the axiom set by:

Eω−veq = Eveq ∪ {yes =
∑
a∈Act

a.yes} ∪ {no =
∑
a∈Act

a.no}. We then prove:

Theorem 2. Eω−veq is complete over closed terms modulo 'ω. That is if m,n are closed
monitors in MonF and m 'ω n then Eω−veq ` m = n,when Act is finite.

Naturally we continue towards the relevant results for open terms. Initially we only expand
the axioms as: E ′veq = Eveq ∪ {yes+ no+ x = yes+ no} and then prove:

Theorem 3. E ′veq is complete for open terms modulo ' when Act is infinite. That is, if m,n
are open monitors in MonF and m ' n then E ′veq ` m = n.

The final part of this work is dedicated to determining an axiomatization with respect
to ' and 'ω for open equations when Act is finite and it includes an analysis on why the
axiomatization cannot be finite.

Finally regarding the complexity of determining whether two monitors are equivalent, our
completeness proof suggests that discovering a normal form for a monitor implies a somewhat
pre-defined application of our axioms. In the case of closed terms the “normalization” procedure
with respect to verdict equivalence can take place recursively and in a way mimicking the
inductive proof of the existence of a normal form. After this is done then the equality testing
of two monitors is trivially testing equality for two rooted, ordered and labelled trees. The final
complexity of the algorithm is O(n · k · log(k)) where k is the size of Act and n is the sum of
the sizes of the syntactic trees of the tested monitors. Future work includes the complexity
analysis for verdict and ω-verdict equivalence testing between open monitors and the study of
the equational theory of regular monitors with recursion.

References

[1] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: From branching to linear time and back again. Proc. ACM Program.
Lang., 3(POPL):52:1–52:29, 2019.

[2] Jos C.M. Baeten, Twan Basten, and Michel A. Reniers. Process Algebra: Equational Theories
of Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2009.

6

Axiomatizing equivalences over regular monitors Aceto, Achilleos, Anastasiadi and Ingólfsdóttir

[3] Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification: Introductory and
Advanced Topics, volume 10457 of Lecture Notes in Computer Science. Springer, 2018.

[4] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy–Milner
Logic with recursion. Form. Methods Syst. Des., 51(1):87–116, 2017.

[5] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm
Sørensen, J. Michael Spivey, and Bernard Sufrin. Laws of programming. Commun. ACM, 30(8):672–
686, 1987.

[6] Harry B. Hunt, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence, contain-
ment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci.,
12:222–268, 1976.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

7

	Introduction
	Background
	Results on axiomatizations and complexity

