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Abstract

When compared to other synchronization methods (such as locks), channels communi-
cation has arguably received lesser attention from the data race checking community. In
this talk, we will present a novel data race checker for a concurrent language featuring
channel communication as its sole synchronization primitive.

Background

Early on, the concept of race, meaning the competition for access to a shared resource, was
explored in the context of channels [12]. Memory models were absent in that setting and,
instead, agents were said to race when sending or receiving messages from the same channel
“at the same time.” Race checking was then conflated often with confluence or determinacy
checking [1], with different schedules leading to potential variations in the flow of information
through a system.

Today, more often than not, the word race is used to denote a data race, where threads
compete when performing read and write accesses to the same location in shared memory.
Because locks have become a very common mechanism for ensuring race-freedom, the contem-
porary discussion on data race checking is often devoid of the notion of channels; neither does
confluence tend to enter the picture. A notable exception is Terauchi and Aiken [17], who give a
modern treatment of confluence checking in the context of channel communication. Their work
incorporates a form of shared memory, which the authors call cell channels. Their treatment,
however, does not address data race checking as a first class property but only as a consequence
of determinacy. Although related, data-race freedom is different from determinacy and conflu-
ence. There exist non-confluent scenarios that are properly synchronized. It is interesting to
note, however, that the task of data race checking in the context of channels has received little
attention.

Even though mutual-exclusion has dominated the synchronization landscape, languages
based on message passing do have a strong footing. Take the Go programming language as
an example [7, 2]. Go has gained traction in networking applications, web servers, distributed
software and the like. “It prominently features goroutines, which are asynchronous functions
resembling lightweight threads, and buffered channel communication in the tradition of CSP [9]
(resp. the π-calculus [13]) or Occam [10]. While encouraging message passing as the prime
mechanism for communication and synchronization, threads can still exchange data via shared
variables. Go’s specification includes a memory model [5] which spells out, in precise but
informal English, the few rules governing memory interaction at the language level” [3].

Our approach

In prior work, we have given an operational formalization of a relaxed memory model inspired
by the Go memory model’s specification. We also proved what is called the DRF-SC guarantee
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[3], meaning that the memory model behaves sequentially consistently when executing data-race
free programs. We now propose a data race checker based on our relaxed memory model and
the DRF-SC result in particular.

(m, !z) ∈ Ehb Er
hb ⊆ Ehb fresh(m′) E′

hb = {(m′, !z)} ∪ (Ehb − Ehb ↓z)
R-Write

p〈Ehb , z := v′; t〉 ‖ m(|Er
hb , z:=v|) −→ p〈E′

hb , t〉 ‖ m′(|∅, z:=v′|)

E′r
hb = {(m′, ?z)} ∪ (Er

hb − Ehb ↓z)
(m, !z) ∈ Ehb fresh(m′) E′

hb = {(m′, ?z)} ∪ (Ehb − Ehb ↓z) ∪ {(m, !z)}
R-Read

p〈Ehb , let r = load z in t〉 ‖ m(|Er
hb , z:=v|) −→ p〈E′

hb , let r = v in t〉 ‖ m(|E′r
hb , z:=v|)

Figure 1: Strong operational semantics augmented for data-race detection

The detector works by recording read- (m, ?z) and write-events (m′, !z), where m, m′, etc.
are unique identifiers. These events are recorded along a variable’s memory cells and in thread-
local storage. The memory cell associated with a shared variable z takes the form m(|Er

hb , z:=v|)
where m is the identifier of the most recent write to z, Er

hb is a set holding read events for loads
that have accumulated since the most recent write to z, and v is the variable’s current value.
Threads are equipped with a set Ehb which holds information about read- and write-events
that are “known” to the thread as having happened-before. When a thread attempts to access
a memory location, the detector checks whether there exists a concurrent memory event that
conflicts with the attempted access—rules R-Write and R-Read of Figure 1. Not shown here
are the rules regarding channel communication. Communication carries over happens-before
information between threads, thereby affecting synchronization.

In this talk, we will show that the information needed for race checking is contained in
the scaffolding of the DRF-SC guarantee proof. Given our experience, we conjecture that, in
general, race checkers may be (semi-)automatically derivable from memory models and their
corresponding DRF-SC proofs. We should point out, however, that the operational semantics we
propose for data race detection is not a weak semantics. Apart from the additional bookkeeping,
the semantics is “strong” in that it formalizes a memory guaranteeing sequential consistency.
Note that, to focus on a form of strong memory is not a limitation. Given that even racy program
behaves sequentially consistently up to the point in which the first data-race is encountered, a
complete race detector can safely operate under the assumption of sequential consistency.

When it comes to channel communication, our treatment focuses on bounded channels,
including synchronous ones. While channels are often used to enforce order between events from
different threads (e.g. a send happens before the corresponding receive completes), we revisit
the link between channels and locks and discuss how the effects of a channel’s boundedness can
be used to ensure mutual-exclusion. The pervasiveness of the notion of mutual-exclusion might
explain why it is often thought that a data race involves two (or more threads) accessing memory
at the same time—or, if not at the same time, that there exists an alternate yet equivalent run
in which the conflicting accesses can be placed side-by-side. We argue that this interpretation is
misleading. Specifically, we show that there exist race conditions in which conflicting accesses
are necessarily ordered and necessarily separated in time by other operations. This observation
has interesting and subtle consequences relating back to anomalies discussed by Lamport in
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his seminal paper on vector-clocks and distributed systems [11]. In the talk, we will discuss
anomalies arising from the fact that the first-in-first-out nature of channels is not fully accounted
for in the happens-before relation as defined by the Go memory model’s description. We show
alternatives for handling the anomalies, but settle with a race detector formalization that is
faithful to the Go language specification.

Finally, we compare our approach to modern data race checkers based on vector clocks. In
particular, we contrast our work against that of Pozniansky and Schuster, which introduced an
algorithm sometimes referred to as Djit+ [14], and to Flanagan and Freund and their work on
FastTrack [4]. Such algorithms have influenced the Thread Sanitizer library [15, 16, 8] upon
which the current Go race detector [6] is implemented.
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