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Context

• Investigate Top-K frequent and Top-K priority skylines as candidate sets for regret minimization
queries1

• Experiment the speedup provided by NSC(Negative Skycube)2 to regret minimization queries

[1] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing representative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–1124, 2010.
[2]Alami, K., Hanusse, N., Kamnang-Wanko, P., & Maabout, S. (2020). The negative skycube. Information Systems, 88, 101443. 
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Preference queries

Given a set of tuples T, it returns a subset of tuples that suits the user preference

• Top-K query: based on scoring function
• Skyline query: based on dominance

Hotel Price Distance

h1 75 100

h2 45 150

h3 50 300

h4 65 450

h5 25 500

h6 50 400

h7 100 150

h8 30 300

• Skyline	query result:
ℎ1, ℎ2, ℎ5 and ℎ!

E.g

• Top-2	query result:	
Scoring function 𝑓 𝑡 = 𝑃 + 𝐷
ℎ1, ℎ2

Preference queries

Mulitidemensional Skylines
Regret minimization query
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Regret minimization query

Introduction 

Limitations
• Top-K query: requires to define a scoring function
• Skyline query: the size of the output is not controlled

Regret minimization query1: bounds the output without requiring a scoring function

[1] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing representative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–1124, 2010. 

We consider 𝐿 the family of linear scoring function

Let 𝑓 ∈ 𝐿, 𝑓"(𝑇) the highest score   

• Given 𝑆 ⊂ 𝑇 the maximum regret ratio, mrr S, L = 𝑚𝑎𝑥#∈%
#! & ' #!())

#!(&)

Problem RMS: Given a dataset T, the family of linear function
𝐿, an integer r, compute a set 𝑆 ⊂ 𝑇 of size r that minimizes

the maximum regret ratio mrr S, L
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Preference queries

Mulitidemensional Skylines
Regret minimization query

The regret represents how much users are statisfied with S. 
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Skyline points as candidates

RMS is NP Hard1

sphere2 is the state of the art heuristic algorithm with guarantees

[1] S.Chester,A.Thomo,S.Venkatesh,andS.Whitesides.Computingk-regret minimizing sets. Proc. VLDB Endow., 7(5):389–400, 2014 
[2] M. Xie et al.. Efficient k-regret query algorithm with restriction-free bound for any dimensionality. Proceedings of SIGMOD Conference 2018

Let 𝑆𝑘𝑦 be the skyline set of 𝑇. Let 𝑆∗ be the optimal solution of an 
RMS instance such that 𝑟 ≤ |𝑆𝑘𝑦|, then 𝑆∗ ⊆ 𝑆𝑘𝑦

Regret minimization query
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Skyline set may be of the size of the whole dataset

We investigate Top-K Frequent skylines and Top-K priority skyline as candidate sets1

[1] We compute Top-KF and Top-KP with index structure NSC
[2] Subspace: subset of dimensions

Mulitidemensional Skylines
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Top-K Frequent (Top-KF) Top-K Priority (Top-KP)

Frequency: the number of subspaces2 where a 
tuple is in the skyline

Priority: the cardinality of the smallest
subspace where a tuple is in the skyline 

Preference queries

Mulitidemensional Skylines
Regret minimization query
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r: size of the output by sphere
d: number of dimensions
D: dataset
S: Skyline set 
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Speedup with skyline candidate set
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Speedup with skyline candidate set
Speedup with Top-KF and Top-KP

r

𝑑 = 8 𝑟 = 30

Regret ratio with Top-KF and Top-KP
Regret ratio of sphere vs Top-KF vs Top-KP
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r: size of the output by sphere
d: number of dimensions

Speedup with Top-KF and Top-KP
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100𝐾, 𝑑 = 8 100𝐾, 𝑟 = 30

Speedup with skyline candidate set
Speedup with Top-KF and Top-KP
Regret ratio with Top-KF and Top-KP
Regret ratio of sphere vs Top-KF vs Top-KP
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r: size of the output by sphere
d: number of dimensions
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Regret ratio with Top-KF and Top-KP
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k: size of the output by sphere, TopKF ,and TopKP
d: number of dimensions
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Regret ratio of sphere vs Top-KF vs Top-KP
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Speedup with skyline candidate set
Speedup with Top-KF and Top-KP
Regret ratio with Top-KF and Top-KP
Regret ratio of sphere vs Top-KF vs Top-KP
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Conclusion and Perspectives
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Conclusion and Perspectives

Conclusion:
• Top-KF computes a good candidate set for sphere
• NSC speedup sphere by optimizing the computation of candidate sets

Perspective:
• A theoretical guarantee on the regret ratio by using the candidate sets Top-KF and Top-KP



12

Questions


