

Using Multidimensional Skylines for Regret Minimization

Alami Karim Maabout Sofian

June 23rd 2020

Context

- Investigate Top-K frequent and Top-K priority skylines as <u>candidate</u> sets for regret minimization queries¹
- Experiment the speedup provided by NSC(Negative Skycube)² to regret minimization queries

^[1] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing representative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–1124, 2010. [2]Alami, K., Hanusse, N., Kamnang-Wanko, P., & Maabout, S. (2020). The negative skycube. Information Systems, 88, 101443.

Preference queries Regret minimization query Mulitidemensional Skylines

Preference queries

Given a set of tuples T, it returns a subset of tuples that suits the user preference

- Top-K query: based on scoring function
- Skyline query: based on dominance

Hotel	Price	Distance
h ₁	75	100
h ₂	45	150
h ₃	50	300
h ₄	65	450
h ₅	25	500
h ₆	50	400
h ₇	100	150
h ₈	30	300

E.g

• Skyline query result: h_1 , h_2 , h_5 and h_8

• Top-2 query result: Scoring function f(t) = P + D h_1, h_2

Regret minimization query

Limitations

- Top-K query: requires to define a scoring function
- Skyline query: the size of the output is not controlled

Regret minimization query¹: bounds the output without requiring a scoring function

We consider *L* the family of linear scoring function

Let $f \in L$, $f_1(T)$ the highest score

• Given $S \subset T$ the maximum regret ratio, $mrr(S, L) = max_{f \in L} \frac{f_1(T) - f_1(S)}{f_1(T)}$

Problem RMS: Given a dataset T, the family of linear function L, an integer r, compute a set $S \subset T$ of size r that minimizes the maximum regret ratio mrr(S, L)

The regret represents how much users are statisfied with S.

^[1] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing representative databases. *Proceedings of the VLDB Endowment*, 3(1-2):1114–1124, 2010.

Preference queries Regret minimization query Mulitidemensional Skylines

Regret minimization query

RMS is NP Hard¹

*sphere*² is the state of the art heuristic algorithm with guarantees

Skyline points as candidates

Let Sky be the skyline set of T. Let S^* be the optimal solution of an RMS instance such that $r \leq |Sky|$, then $S^* \subseteq Sky$

Preference queries Regret minimization query Mulitidemensional Skylines

Mulitidemensional Skylines

Skyline set may be of the size of the whole dataset

We investigate Top-K Frequent skylines and Top-K priority skyline as candidate sets¹

Top-K Frequent (Top-KF)	Top-K Priority (Top-KP)
Frequency: the number of subspaces ² where a tuple is in the skyline	Priority: the cardinality of the smallest subspace where a tuple is in the skyline

^[1] We compute Top-KF and Top-KP with index structure NSC

^[2] Subspace: subset of dimensions

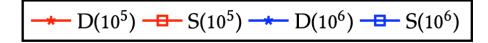
Speedup with skyline candidate set Speedup with Top-KF and Top-KP Regret ratio with Top-KF and Top-KP Regret ratio of *sphere* vs Top-KF vs Top-KF

Speedup with skyline candidate set

10²

10¹

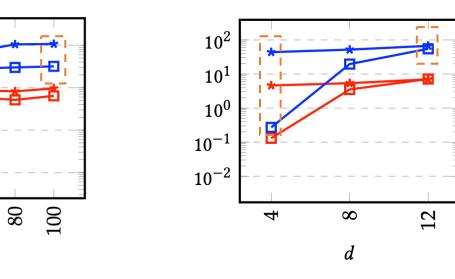
10⁰


 10^{-1}

20

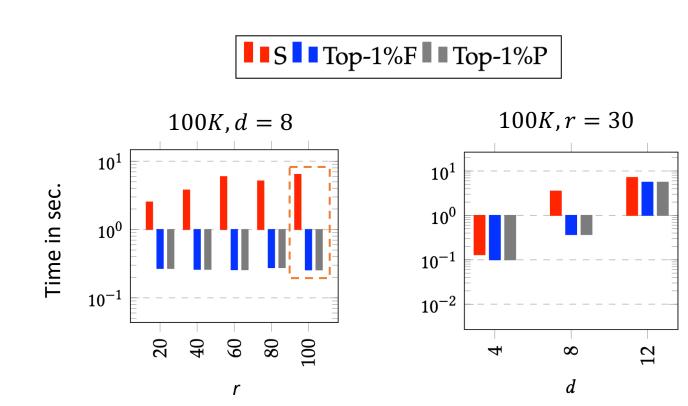
40

60


r

Time in sec.

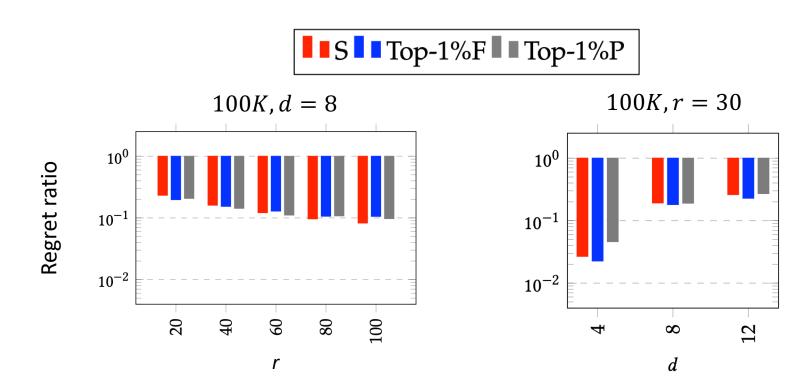
r: size of the output by sphere


d: number of dimensions

D: dataset

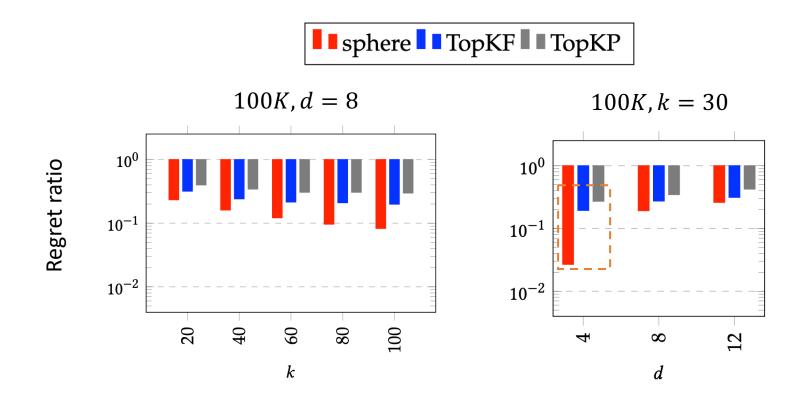
S: Skyline set

Speedup with skyline candidate set Speedup with Top-KF and Top-KP Regret ratio with Top-KF and Top-KP Regret ratio of *sphere* vs Top-KF vs Top-KP


Speedup with Top-KF and Top-KP

r: size of the output by sphere d: number of dimensions

Speedup with skyline candidate set Speedup with Top-KF and Top-KP Regret ratio with Top-KF and Top-KP Regret ratio of *sphere* vs Too-KF vs Too-KP


Regret ratio with Top-KF and Top-KP

r: size of the output by sphere d: number of dimensions

Speedup with skyline candidate set Speedup with Top-KF and Top-KP Regret ratio with Top-KF and Top-KP Regret ratio of *sphere* vs Top-KF vs Top-KP

Regret ratio of *sphere* vs Top-KF vs Top-KP

k: size of the output by sphere, TopKF , and TopKP d: number of dimensions

Conclusion and Perspectives

Conclusion:

- Top-KF computes a good candidate set for *sphere*
- NSC speedup *sphere* by optimizing the computation of candidate sets

Perspective:

• A theoretical guarantee on the regret ratio by using the candidate sets Top-KF and Top-KP

Questions