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Problem and Motivation1
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What is a k Nearest Neighbor Join Query (kNNJQ)?
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In mobile location services:

• Locations of shopping centers

• Positions of possible customers (smartphone with GPS)

“find the 10 nearest possible customers to each shopping center 
for sending an advertising SMS about a fashion brand available 
there.”



What is a k Nearest Neighbor Join Query (kNNJQ)?
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What if we are talking about Big Spatial Data?
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There is a huge increase of the 
volume of available spatial data 
world-wide

How to deal with that?

Distributed Spatial Analytics 
Systems 

• Shared-nothing clusters

• Apache Spark

• In memory processing 

• less disk writes and reads 
than Hadoop
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Problem and Motivation

Experimental 
evaluation

Apache 
Sedona

• SpatialSpark

• Simba

• LocationSpark (Winner for kNNJQ)

• GeoSpark (aka Sedona)

• Almost complete (data types
and queries)

• Best performance

• Actively under development

• It does not support kNNJQ
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Problem and Motivation

Simba

• Block nested loop kNNJ

• BKJSpark-N 

• BKJSpark-R (R-tree)

• VKJSpark (Voronoi)

• ZKJSpark (Z-values) 

• RKJSpark (R-tree)
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LocationSpark

• Block nested loop kNNJ

• nestR-tree

• nestQtree

• sfcurve (Hilbert-curve)

• pgbjk

• spitfire



𝑘 Nearest Neighbor Join Query in 
Apache Sedona2
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Extends Apache Spark and SparkSQL with native
support for spatial data.

• Spatial RDD Layer
• Spatial Data types (Spatial RDD)

• Basic Geometric operations (JTS)

• Global partitioning
• Grid, R-tree, Quadtree, kDB-tree

• Local Indices

• Spatial Query Processing Layer
• Spatial operations

• Visualization Layer
• GeoSparkViz

• GeoSparkSim (urban traffic sim)
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Apache Sedona



kNNJQ algorithm in Apache Sedona. P x Q where |P| < |Q|

1. Information
Distribution

•It partitions Q using:

•Grid, R-tree, Quadtree, 
kDB-tree.

•Optional R-tree local 
index over each partition.

•Partitions P over the
partitions of Q.

2. Bin kNNJ

•Bin Spatial-Join of PxQ
with kNNQ as join
operand.

•Local kNNQ
•No-Index: Plane-sweep

•With-Index: R-tree

•Completness check
•Final kNN lists

•Non final kNN lists

3. kNNJ on
Overlapping Partitions

•Spatial range join using
the distance of each non-
final point of P to its k-th
nearest neighbor.

•It can result in multiple
kNN lists per point.

4. Merge Results

•It AGGREGATES and 
merges non final kNN lists
from steps 2 and 3.

•It does an UNION
between final kNN list
from step 2 and previous
results.
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kNNJQ algorithm in Apache Sedona. 
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Important!!
Avoid wide dependencies
Important!!
Avoid wide dependencies



Experimentation3
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Experimentation

• Performance metrics, 
• Total Execution Time,

• Total Shuffled Data,
• Data redistributed across partitions that may or may not move across processes, 

executors or nodes

• Peak Execution Memory
• Highest execution memory of all the tasks of a specific job

• Configuration parameters,
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Parameter Values (default)

k for kNNJQ (25), 50, 75, 100

Partitioning technique Grid – G, R-tree – R, 
Quadtree – Q, (kDB-tree – KD) 

Local Index No Index, R-tree

number of executors (η) 2, 4, 6, 8, 10, (12)



Experimentation

• Real datasets from OpenStreetMap: 

• BUILDINGS (B) which contains 115M records of 
buildings, 

• ROADS (R) which contains 72M records of roads,

• PARKS (P) which contains 10M records of parks 
and green areas,

• and LAKES (L) which contains 8.4M points of 
water areas, 
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Experimentation

• Setup
• Cluster of 7 nodes on an OpenStack environment. 

• 1 Master Node

• 6 Slave Nodes

• Each node has 8 vCPU with 64GB of main memory running Linux
operating systems with:

• Hadoop 2.7.1.2.3

• Spark 2.4.7
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Experimentation
Different Spatial Partitioning Techniques (Dataset sizes)

• Grid
• Highest execution times

• Uniform -> Real data

• Skew problems (Bin kNNJ)

• R-tree
• Higher time values (kNNJ on 

Overlapping Partitions)
• Non-regular partitions

• Quadtree and kDB-tree
• Winners, especially kDB-tree.

• kDB-tree has more balanced 
partitions

• Quadtree -> spatial properties

• kDB-tree -> number of points
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Execution time grows as dataset size 
increases



Experimentation
Different Spatial Partitioning Techniques (k values)
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• Grid
• Stable growth of the execution time

• Step in k = 50 -> uniform

• R-tree
• Higher increase (kNNJ on Overlapping 

Partitions vs Bin kNNJ)

• Number of overlaps grows 
significantly -> more kNN lists

• Quadtree and kDB-tree
• Winners, especially kDB-tree.

• kDB-tree has better data distribution

• Reduced number of overlapping 
partitions -> small increase in Step 3.

• Quadtree has multiple overlapping 
partitions per point

• Increase in Merge Results

The larger the k value, the larger the 
execution time



Experimentation
Indices over best spatial partitioning technique kDB-tree (execution time)
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• Similar execution time of the Information 
Distribution and Merge Results steps

• Proportional execution time between Bin 
kNNJ and kNNJ on Overlapping Partitions

• R-tree index is 6x faster than No Index 

• No Index (Plane sweep) has better 
performance than brute force.



Experimentation
Indices over best spatial partitioning technique kDB-tree (Total Shuffled Data)
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• Similar values for each step of the 
algorithm

• Same values for the Information 
Distribution and Bin kNNJ

• Same partitioning and number of 
generated knn lists

• Higher values for R-tree for the kNNJ on 
Overlapping Partitions and Merge 
Results

• Optimization in the plane-sweep 
algorithm reduces number of kNN lists

• R-tree uses built-in spatial range join

• No significant compared to performance.



Experimentation
Indices over best spatial partitioning technique kDB-tree (Peak Execution Memory)
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• Memory requirement increases linearly 
with the increase of k

• More kNN lists

• No Index consumes less memory than R-
tree

• R-tree needs the tree nodes information 
in-memory (13 %).



Experimentation
Number of executors (k = 25)
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• Better performance if more executors 
are used

• Higher values (η > 4) have less
performance gain

• Data skew issues

• Most Expensive task = 155 s

• Median = 11.4 s

• Solution:
• Improve spatial partitioning methods

• Bulk-loading methods

• Use spatial repartitioning techniques



Conclusions and Future Work4
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Conclusions

• A set of experiments over the proposed kNNJQ algorithm in Sedona have 
demonstrated

• the efficiency (in terms of total execution time) 

• the scalability (in terms of k values, sizes of datasets and number of executors 
(η)).

• kDB-tree partitioning technique shows the best performance thanks to

• its regular data-based subdivision

• its more balanced partitions.

• The use of R-tree as an in-memory local index significantly increases the 
performance

• compared to other non-indexed methods such as a plane-sweep algorithm.
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Conclusions

• Memory  requirements (in  terms  of Peak  Execution  Memory and Shuffled Data) 
increase linearly with the value of k

• allowing the use of higher k values without consuming many cluster resources.

• The performance of the kNNJQ algorithm improves as the number of executors (η)) 
increases, 

• although there are skew problems that prevent further improvements
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Future Work

• Implement kNNJQ using Quadtree as 
local index

• Extend the algorithm to other spatial
data types, like point-rectangle, 
rectangle-polygon, etc.

• Comparison with other DSAS like
LocationSpark.
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Questions?

Thank you for your attention
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