
*Speaker

TIN2017-83964-R
“Study of a holistic approach for the interoperability and

coexistence of dynamic systems: Implication in Smart Cities models”

10th International Conference on Model and Data

Engineering (MEDI’2021)
21 - 23 June 2021, Tallinn, Estonia

Enhancing Sedona (formerly GeoSpark) with

Efficient kNearest Neighbor Join Processing

Francisco García-García1, Antonio Corral1,

Luis Iribarne1, and Michael Vassilakopoulos2

1Applied Computing Group, Dept. of Informatics, University of Almería, Spain
2DaSE Lab, Dept. of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

Outline

Problem and Motivation
𝑘 Nearest Neighbor Join Query (𝑘NNJQ)

Distributed Spatial Analytics Systems

𝑘 Nearest Neighbor Join Query in
Apache Sedona

Sedona

𝑘NNJQ algorithm in Sedona

Experimentation

Real World Datasets

Spatial Partitioning Techniques

Use of Local Indices

Number of executors

Conclusions and Future Work

2

Problem and Motivation1
3

What is a k Nearest Neighbor Join Query (kNNJQ)?

4

In mobile location services:

• Locations of shopping centers

• Positions of possible customers (smartphone with GPS)

“find the 10 nearest possible customers to each shopping center
for sending an advertising SMS about a fashion brand available
there.”

What is a k Nearest Neighbor Join Query (kNNJQ)?

5

What if we are talking about Big Spatial Data?

6

There is a huge increase of the
volume of available spatial data
world-wide

How to deal with that?

Distributed Spatial Analytics
Systems

• Shared-nothing clusters

• Apache Spark

• In memory processing

• less disk writes and reads
than Hadoop

7

Problem and
Motivation

Problem and Motivation

Experimental
evaluation

Apache
Sedona

• SpatialSpark

• Simba

• LocationSpark (Winner for kNNJQ)

• GeoSpark (aka Sedona)

• Almost complete (data types
and queries)

• Best performance

• Actively under development

• It does not support kNNJQ

8

Problem and Motivation

Simba

• Block nested loop kNNJ

• BKJSpark-N

• BKJSpark-R (R-tree)

• VKJSpark (Voronoi)

• ZKJSpark (Z-values)

• RKJSpark (R-tree)

9

LocationSpark

• Block nested loop kNNJ

• nestR-tree

• nestQtree

• sfcurve (Hilbert-curve)

• pgbjk

• spitfire

𝑘 Nearest Neighbor Join Query in
Apache Sedona2

10

Extends Apache Spark and SparkSQL with native
support for spatial data.

• Spatial RDD Layer
• Spatial Data types (Spatial RDD)

• Basic Geometric operations (JTS)

• Global partitioning
• Grid, R-tree, Quadtree, kDB-tree

• Local Indices

• Spatial Query Processing Layer
• Spatial operations

• Visualization Layer
• GeoSparkViz

• GeoSparkSim (urban traffic sim)

11

Apache Sedona

kNNJQ algorithm in Apache Sedona. P x Q where |P| < |Q|

1. Information
Distribution

•It partitions Q using:

•Grid, R-tree, Quadtree,
kDB-tree.

•Optional R-tree local
index over each partition.

•Partitions P over the
partitions of Q.

2. Bin kNNJ

•Bin Spatial-Join of PxQ
with kNNQ as join
operand.

•Local kNNQ
•No-Index: Plane-sweep

•With-Index: R-tree

•Completness check
•Final kNN lists

•Non final kNN lists

3. kNNJ on
Overlapping Partitions

•Spatial range join using
the distance of each non-
final point of P to its k-th
nearest neighbor.

•It can result in multiple
kNN lists per point.

4. Merge Results

•It AGGREGATES and
merges non final kNN lists
from steps 2 and 3.

•It does an UNION
between final kNN list
from step 2 and previous
results.

12

kNNJQ algorithm in Apache Sedona.

13

Important!!
Avoid wide dependencies
Important!!
Avoid wide dependencies

Experimentation3
14

Experimentation

• Performance metrics,
• Total Execution Time,

• Total Shuffled Data,
• Data redistributed across partitions that may or may not move across processes,

executors or nodes

• Peak Execution Memory
• Highest execution memory of all the tasks of a specific job

• Configuration parameters,

15

Parameter Values (default)

k for kNNJQ (25), 50, 75, 100

Partitioning technique Grid – G, R-tree – R,
Quadtree – Q, (kDB-tree – KD)

Local Index No Index, R-tree

number of executors (η) 2, 4, 6, 8, 10, (12)

Experimentation

• Real datasets from OpenStreetMap:

• BUILDINGS (B) which contains 115M records of
buildings,

• ROADS (R) which contains 72M records of roads,

• PARKS (P) which contains 10M records of parks
and green areas,

• and LAKES (L) which contains 8.4M points of
water areas,

16

Experimentation

• Setup
• Cluster of 7 nodes on an OpenStack environment.

• 1 Master Node

• 6 Slave Nodes

• Each node has 8 vCPU with 64GB of main memory running Linux
operating systems with:

• Hadoop 2.7.1.2.3

• Spark 2.4.7

17

Experimentation
Different Spatial Partitioning Techniques (Dataset sizes)

• Grid
• Highest execution times

• Uniform -> Real data

• Skew problems (Bin kNNJ)

• R-tree
• Higher time values (kNNJ on

Overlapping Partitions)
• Non-regular partitions

• Quadtree and kDB-tree
• Winners, especially kDB-tree.

• kDB-tree has more balanced
partitions

• Quadtree -> spatial properties

• kDB-tree -> number of points

18

Execution time grows as dataset size
increases

Experimentation
Different Spatial Partitioning Techniques (k values)

19

• Grid
• Stable growth of the execution time

• Step in k = 50 -> uniform

• R-tree
• Higher increase (kNNJ on Overlapping

Partitions vs Bin kNNJ)

• Number of overlaps grows
significantly -> more kNN lists

• Quadtree and kDB-tree
• Winners, especially kDB-tree.

• kDB-tree has better data distribution

• Reduced number of overlapping
partitions -> small increase in Step 3.

• Quadtree has multiple overlapping
partitions per point

• Increase in Merge Results

The larger the k value, the larger the
execution time

Experimentation
Indices over best spatial partitioning technique kDB-tree (execution time)

20

• Similar execution time of the Information
Distribution and Merge Results steps

• Proportional execution time between Bin
kNNJ and kNNJ on Overlapping Partitions

• R-tree index is 6x faster than No Index

• No Index (Plane sweep) has better
performance than brute force.

Experimentation
Indices over best spatial partitioning technique kDB-tree (Total Shuffled Data)

21

• Similar values for each step of the
algorithm

• Same values for the Information
Distribution and Bin kNNJ

• Same partitioning and number of
generated knn lists

• Higher values for R-tree for the kNNJ on
Overlapping Partitions and Merge
Results

• Optimization in the plane-sweep
algorithm reduces number of kNN lists

• R-tree uses built-in spatial range join

• No significant compared to performance.

Experimentation
Indices over best spatial partitioning technique kDB-tree (Peak Execution Memory)

22

• Memory requirement increases linearly
with the increase of k

• More kNN lists

• No Index consumes less memory than R-
tree

• R-tree needs the tree nodes information
in-memory (13 %).

Experimentation
Number of executors (k = 25)

23

• Better performance if more executors
are used

• Higher values (η > 4) have less
performance gain

• Data skew issues

• Most Expensive task = 155 s

• Median = 11.4 s

• Solution:
• Improve spatial partitioning methods

• Bulk-loading methods

• Use spatial repartitioning techniques

Conclusions and Future Work4
24

Conclusions

• A set of experiments over the proposed kNNJQ algorithm in Sedona have
demonstrated

• the efficiency (in terms of total execution time)

• the scalability (in terms of k values, sizes of datasets and number of executors
(η)).

• kDB-tree partitioning technique shows the best performance thanks to

• its regular data-based subdivision

• its more balanced partitions.

• The use of R-tree as an in-memory local index significantly increases the
performance

• compared to other non-indexed methods such as a plane-sweep algorithm.

25

Conclusions

• Memory requirements (in terms of Peak Execution Memory and Shuffled Data)
increase linearly with the value of k

• allowing the use of higher k values without consuming many cluster resources.

• The performance of the kNNJQ algorithm improves as the number of executors (η))
increases,

• although there are skew problems that prevent further improvements

26

Future Work

• Implement kNNJQ using Quadtree as
local index

• Extend the algorithm to other spatial
data types, like point-rectangle,
rectangle-polygon, etc.

• Comparison with other DSAS like
LocationSpark.

27

2
8

Questions?

Thank you for your attention

Thank you for your attention

TIN2017-83964-R

Enhancing Sedona (formerly GeoSpark) with

Efficient kNearest Neighbor Join Processing

Francisco García-García1, Antonio Corral1,

Luis Iribarne1, and Michael Vassilakopoulos2

1Applied Computing Group, Dept. of Informatics, University of Almeria, Spain
2DaSE Lab, Dept. of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

paco.garcia@ual.es

http://acg.ual.es

mailto:paco.garcia@ual.es
http://acg.ual.es

