10th International Conference on Model and Data Engineering (**MEDI'2021**) 21 - 23 June 2021, Tallinn, Estonia

Enhancing Sedona (formerly GeoSpark) with Efficient kNearest Neighbor Join Processing

Francisco García-García¹, Antonio Corral¹, Luis Iribarne¹, and Michael Vassilakopoulos²

¹Applied Computing Group, Dept. of Informatics, University of Almería, Spain ²DaSE Lab, Dept. of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

TIN2017-83964-R

"Study of a holistic approach for the interoperability and coexistence of dynamic systems: Implication in Smart Cities models"

Outline

Problem and Motivation

What is a k Nearest Neighbor Join Query (kNNJQ)?

In mobile location services:

Locations of shopping centers

Positions of possible customers (smartphone with GPS)

"find the **10** *nearest possible customers to each shopping center for sending an advertising SMS about a fashion brand available there."*

What is a k Nearest Neighbor Join Query (kNNJQ)?

What if we are talking about Big Spatial Data?



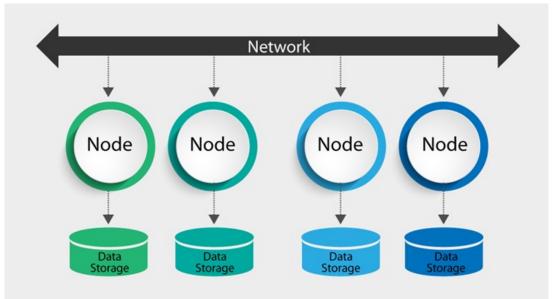
Problem and Motivation

There is a huge increase of the volume of available spatial data world-wide

How to deal with that?

Distributed Spatial Analytics Systems

- Shared-nothing clusters
- Apache Spark
 - In memory processing
 - less disk writes and reads than Hadoop



Problem and Motivation

Problem and Motivation

Simba

- Block nested loop kNNJ
 - BKJSpark-N
 - BKJSpark-R (R-tree)
- VKJSpark (Voronoi)
- ZKJSpark (Z-values)
- **RKJSpark** (R-tree)

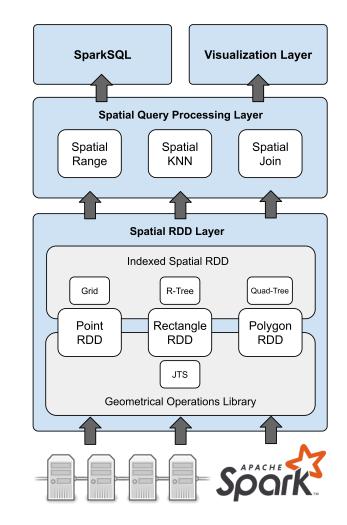
- Block nested loop kNNJ
 - nestR-tree
 - nestQtree
- sfcurve (Hilbert-curve)
- pgbjk
- spitfire

k Nearest Neighbor Join Query in Apache Sedona

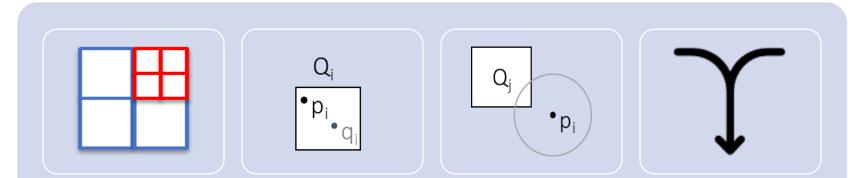
Apache Sedona

Extends Apache Spark and SparkSQL with native support for spatial data.

- Spatial RDD Layer
 - Spatial Data types (Spatial RDD)
 - Basic Geometric operations (JTS)
 - Global partitioning
 - Grid, R-tree, Quadtree, kDB-tree
 - Local Indices
- Spatial Query Processing Layer
 - Spatial operations
- Visualization Layer
 - GeoSparkViz
 - GeoSparkSim (urban traffic sim)



kNNJQ algorithm in Apache Sedona. P x Q where |P| < |Q|



1. Information Distribution

- It partitions Q using: • Grid, R-tree, Quadtree, kDB-tree.
- •Optional **R-tree local index** over each partition.
- Partitions P over the partitions of Q.

2. Bin kNNJ

- Bin Spatial-Join of PxQ with kNNQ as join operand.
- Local kNNQ • No-Index: Plane-sweep • With-Index: R-tree
- Completness check •Final kNN lists •Non final kNN lists

3. kNNJ on Overlapping Partitions

- Spatial range join using the distance of each nonfinal point of P to its k-th nearest neighbor.
- It can result in **multiple kNN lists per point.**

4. Merge Results

- It **AGGREGATES** and merges non final kNN lists from steps 2 and 3.
- It does an **UNION** between final kNN list from step 2 and previous results.

kNNJQ algorithm in Apache Sedona.

Important!! Avoid wide dependencies -

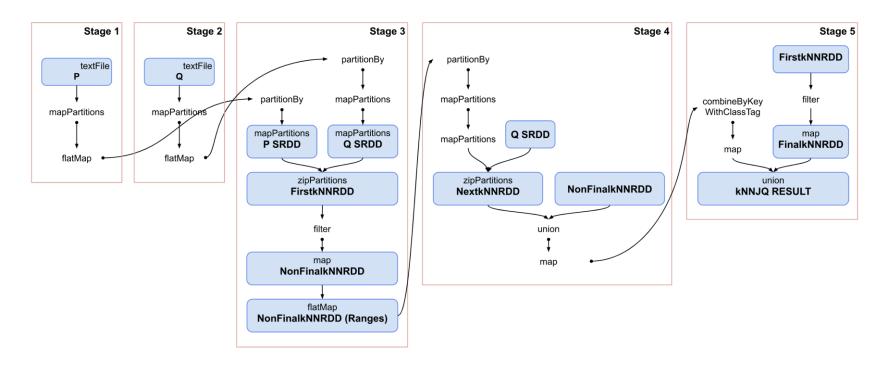


Fig. 1. Spark DAG for kNNJQ Algorithm in Sedona.

• Performance metrics,

- Total Execution Time,
- Total Shuffled Data,
 - Data redistributed across partitions that may or may not move across processes, executors or nodes
- Peak Execution Memory
 - Highest execution memory of all the tasks of a specific job

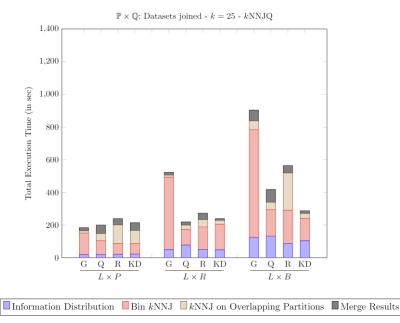
• Configuration parameters,

Parameter	Values (default)
k for kNNJQ	(25), 50, 75, 100
Partitioning technique	Grid – G, R-tree – R, Quadtree – Q, (kDB-tree – KD)
Local Index	No Index, R-tree
number of executors (η)	2, 4, 6, 8, 10, (12)

- Real datasets from OpenStreetMap:
 - BUILDINGS (B) which contains 115M records of buildings,
 - ROADS (R) which contains 72M records of roads,
 - **PARKS (P)** which contains **10M** records of parks and green areas,
 - and LAKES (L) which contains 8.4M points of water areas,

OpenStreetMap

- Setup
 - Cluster of 7 nodes on an OpenStack environment.
 - 1 Master Node
 - 6 Slave Nodes
 - Each node has **8 vCPU** with **64GB** of main memory running **Linux** operating systems with:
 - Hadoop 2.7.1.2.3
 - Spark 2.4.7

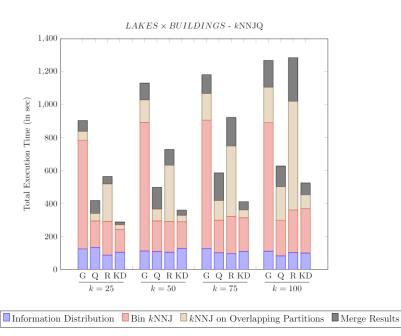


Execution time grows as dataset size increases

• Grid

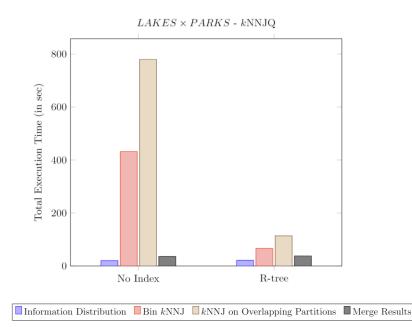
- Highest execution times
 - Uniform -> Real data
 - Skew problems (Bin kNNJ)
- R-tree
 - **Higher time values** (*kNNJ on Overlapping Partitions*)
 - Non-regular partitions
- Quadtree and kDB-tree
 - Winners, especially kDB-tree.
 - kDB-tree has more balanced partitions
 - Quadtree -> spatial properties
 - kDB-tree -> number of points

Experimentation Different Spatial Partitioning Techniques (k values)

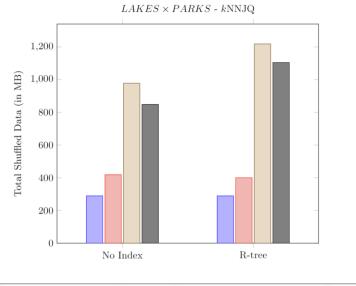


The larger the k value, the larger the execution time

- Grid
 - Stable growth of the execution time
 - Step in k = 50 -> uniform
- R-tree
 - **Higher increase** (*kNNJ on Overlapping Partitions* vs *Bin kNNJ*)
 - Number of overlaps grows significantly -> more kNN lists
- Quadtree and kDB-tree
 - Winners, especially kDB-tree.
 - kDB-tree has better data distribution
 - Reduced number of overlapping partitions -> small increase in Step 3.
 - Quadtree has multiple overlapping partitions per point
 - Increase in Merge Results

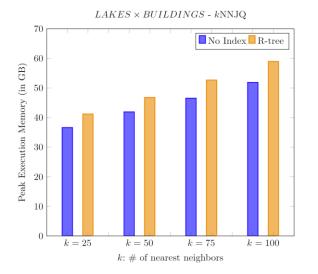


- Similar execution time of the Information Distribution and Merge Results steps
- Proportional execution time between Bin kNNJ and kNNJ on Overlapping Partitions
- R-tree index is 6x faster than No Index
- No Index (Plane sweep) has better performance than brute force.

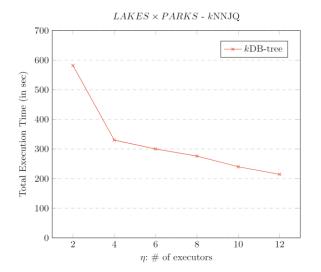


Information Distribution \square Bin kNNJ \square kNNJ on Overlapping Partitions \blacksquare Merge Results

- Similar values for each step of the algorithm
- Same values for the Information Distribution and Bin kNNJ
 - Same partitioning and number of generated knn lists
- Higher values for R-tree for the kNNJ on Overlapping Partitions and Merge Results
 - Optimization in the plane-sweep algorithm reduces number of kNN lists
 - R-tree uses built-in spatial range join
 - No significant compared to performance.



- Memory requirement increases linearly with the increase of k
 - More kNN lists
- No Index consumes less memory than Rtree
 - **R-tree** needs the **tree nodes information in-memory** (13 %).



- Better performance if more executors are used
- Higher values (η > 4) have less performance gain
 - Data skew issues
 - Most Expensive task = 155 s
 - Median = **11.4 s**
- Solution:
 - Improve spatial partitioning methods
 - Bulk-loading methods
 - Use spatial **repartitioning** techniques

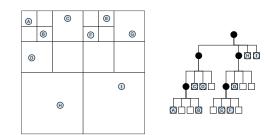
Conclusions and Future Work

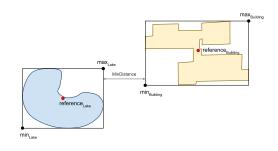
- A set of experiments over the proposed kNNJQ algorithm in Sedona have demonstrated
 - the **efficiency** (in terms of total execution time)
 - the scalability (in terms of k values, sizes of datasets and number of executors (η)).
- **kDB-tree** partitioning technique **shows the best performance** thanks to
 - its regular data-based subdivision
 - its more balanced partitions.
- The use of R-tree as an in-memory local index significantly increases the performance
 - compared to other non-indexed methods such as a plane-sweep algorithm.

- Memory requirements (in terms of Peak Execution Memory and Shuffled Data) increase linearly with the value of k
 - allowing the use of higher k values without consuming many cluster resources.
- The performance of the kNNJQ algorithm improves as the number of executors (η)) increases,
 - although there are skew problems that prevent further improvements

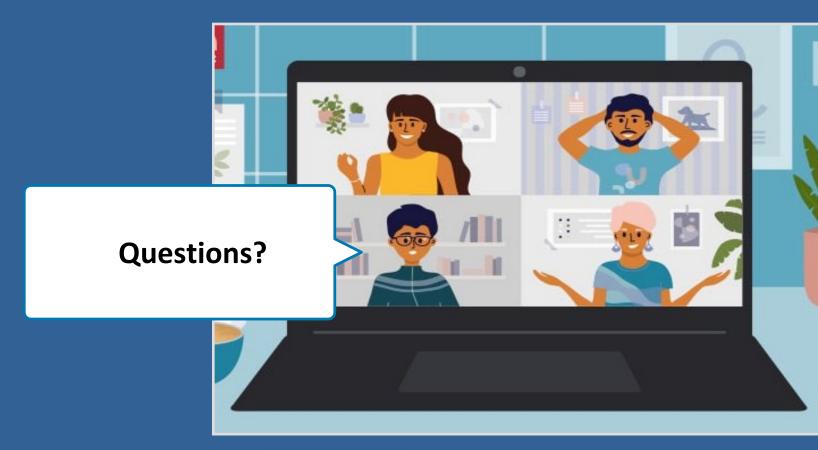
 Implement kNNJQ using Quadtree as local index

- Extend the algorithm to **other spatial data types**, like point-rectangle, rectangle-polygon, etc.
- Comparison with other DSAS like LocationSpark.





Thank you for your attention



Thank you for your attention

Enhancing Sedona (formerly GeoSpark) with Efficient kNearest Neighbor Join Processing

Francisco García-García¹, Antonio Corral¹, Luis Iribarne¹, and Michael Vassilakopoulos²

¹Applied Computing Group, Dept. of Informatics, University of Almeria, Spain ²DaSE Lab, Dept. of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

paco.garcia@ual.es

http://acg.ual.es

