UNIVERSITE DE NANTES

More Automation in Model Driven
Development

MEDI 2021

Pascal André, Mohammed El Amin Tebib
LS2N, University of Nantes, France

Davidson, Paris , France

More Automation in Model Driven Development

Introduction

software development cost

Worldwide IT spending is projected to total $4.1
key values findings trillion in 2021, an increase of 8.4% from 2020

/ according to the latest forecast by Gartner, Inc.
® Expensive IT

{ E H
xpensive software development /\4
o . .)(, Top Technology Category Based on 5 Year CAGR
Expensive low quality (2018 - 2023) (Value (Constant Annual))

()
()
=
=
=
©
=
©
S
©
s
=
<<
(O}
| .
©
=

37.46% 11 1%

Losses from
SW failures

21.42%
Legacy system \)(Ce

problems
6.01%

Troubled/

P. André — MEDI 2021

cé mullt:d
0, “_ \e\\><(\
16.87% n 2
18.22% Finding/fizig
- g
<pplication Development & Depl. .. & Applications
' Infrastructure System Infrastructure Software

& Project Oriented Others

\a
Pa(t\ . . Source: IDC Worldwide ICT Spending Guide Industry and Company Size 2019H1
the COSF of p (1)0; n the US in 2018 is https://www.idc.com/getdoc.jsp ?containerld=prus46047320
approximately 101,

https://www.gartner.com/en/newsroom/press-releases/2021-04-07-gartner-forecasts-worldwide-it-spending-to-reach-4-trillion-in-2021

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

Introduction
Model Driven Development

e Context = models
MDD
Models + transformations

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

= Software MDSE [Cabot 2012]
* Problem
Model refinement miss automation (see stepl)

Contribution

P. André — MEDI 2021

< rationalise the process by a structuring frame {!\1
<~ increase the role of platform in MT

More Automation in MDD
Outline

Introduction
<~ Contribute to rationalize the development

process by a structuring frame

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

Step 1 MDD in practice

Step 2 A structuring frame

Step 3 Implementation and validation

P. André — MEDI 2021

* Conclusion

Step 1 MDD in practice

Three approaches to refine models to code

Student projects

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

1. Standard implementation @
design and programming <&

2. Code generation (from high level specifications) <<Q* O

CASE tools &

S)

, \c,e & E:

3. Model transformation \ =
refinement process \)&o

Experimentations on a representative small case study

Step 1 MDD in practice

Home automation example : Garage door

()
()
=
=
=
©
=
©
S
©
s
=
<<
(O}
| .
©
=

motor
I —
Clgnotant de agnalsation S
‘ a
Ll
Sélecteur o E
|
o
©
C
<
Emefteur o a
Remote transmitter i - _ , sensors =~

Source: https://www.bricozor.com/automatisme-portes-garages-serie-ver-24-4400-came.html|

< Software Logic model

Refining models to code

Domain

Technique

1- design and programming /~\ Pk

(_ Requirements \\ Technical requirements

N\ O

Lejos

e Logic model (UML)

(_ Analysis (Architectures, frameworks)
° 1 1 - Techntcg—‘
Design / coding ¥ical \ \/ / ohinic
. Prellmlnary design i
, Testlng g android
Design
(Detaileddesign) model

@ checklDatal

(Implementation, V&V)

Deployment

Construction

—
o
s Java Class>>
X 2T L e
<<la BMotor N
[]'ETI¥} Porte Controlleur main 5
<<Java Class>> a motor: RegulatedMotor Ty}
“29‘-“3 Data GCon;roIIer -motor? & Motor(RegulatedMator) E
“S'“' Datalr CUGURLABSRSE main 0.1 | @ getMotor():RegulatedMotor
“SBTCG""B o stateBlocked: StateDoor @ setMotor(RegulatedMotor):void |
s*commant o stateClosed: StateDoor -motor! _| o push(): void)]
o°stop_app A o stateClosing: StateDoor -1 | @ pull{):void =
&MainClas / -previousState o stateOpened StateDoor o stop{)-void ©
Fmain(Stri FERNIERLA PURTE . o stateOpening: StateDoor <CE
@connect(] o statePartial: StateDoor = (O)
EwriteMes o portSensorOpened?: Port ® Sensor o
,O"‘ o portSensorClosed?: Port +sensoDoorOpened? main
-listState QEContro.llerg a capteur. EV3TouchSensor
zoreno.p_d -controller 0.17] & running boolean
el 0.1 &Sensor([EV3TouchS
-connecti 21 © contact():void ensor(- ouchSensor)
. © displayListSate():void ~—° getgunp;ngorbodean —
- @ run():voi
<«Ja O backUpKz.l.y(_).\.ocd +sensoDoorClosed? | o contact()vol
®Com -actualSiate gnce():void Af ci() boolean
d: @ getAc z N _
m © setActualState(Stht (‘ - u p @ getController():Controller)
pu = getl astEtat() StateDoor] setConm_:iler(Contrdler):\.ud
& Connectiond © saveContact()void @ arret():void
© connectlole q o) 0 © saweState(StateDoor):void

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

Refining models to code
1- design and programming [feedback

* Operational result = running application

* The logic model used as a reference
not as an abstraction

* The “functional capability » overrides
other software qualities

* Knowledge and expertise influence
the design and programming decision

e Communication refinement
is a first class issue

Partially automating ?

I Wdmi7
Porte Controlleur
OUVRIR LA PORTE

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

P. André — MEDI 2021

Refining models to code

2- code generation

* Quick UML Case Tools overview
* Coverage: good for the structure

120%

low for behaviour (STD) and messages (MOM)

* Integration : annotations / roundtrip but not APl mapping
* Purpose: simulation (xUML), target code

Star UML Papyrus Yakindu Modelio VisualParadim | IBM rational rhapsody

UML - XMI 2.0 2.5 - 24.1 2.0 2.4.1

CD Vv V - N N Vv

STD — - one only 15' v W/ —
Operations incremental - RoundTrip RoundTrip v

Round-trip - override - v v Vv

MOM — - - - - ——
API Mapping <—_ - - - - - -

Licence? F,C o) F,C o) C C

= Stepwise refinement

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

P. André — MEDI 2021

Refining models to code

3- model transformation informations

Experimentation feedback

transformation

* No generic transformation process

* Empirical PIM/PSM & Transformations

()
()
=
=
=
0
-+
©
S
©
-+
=
<
g
FisM (®)
=

* Weak Engineering Tool support

* Languages, Transformations tooling [Kahani2018]
* Challenging topic [Bucchiarone 2020]

* Most transformations are complex

 difficult when the source and target model are not semantically
closed e.g. UML statecharts or UML message send — Wifi/BT networks

P. André — MEDI 2021

* Insert design decisions in systematic transformation (parameters)

* Design macro- and micro- transformations
L2 —>Trial and error e.g. tiny ATL transformations (STD)

2>
CS)
L
[EEY
o

4 < Key issues for automation ﬁ

Step 1 MDD in practice
Issues
* Problem of distance between

[business] abstractions and
[technical] platforms

(@]
(@]
=
1S
=
e
-+
©
S
©
-+
=
<
(O]
| .
©
>

* Only detailed models can lead

to detail code (cf xUML,
simulation)

° Design concerns cover Cross-

cutting concepts
(Persistence / GUI / distribution /
communication)

P. André — MEDI 2021

* No generic transformation
process

[y
[N

e Guidelines

i FIGlelIlty answers ?

Step 2 A structuring frame
Step1 - issues

* Problem of distance between

[business] abstractions and -~
[technical] frameworks

* Only detailed models can lead
to detail code (cf xUML, .

simulation)

° Design concerns cover Cross-

cutting concepts
(Persistence / GUI / distribution /=——>
communication)

* No generic transformation
process

e Guidelines
* Flexibility

Step 2 - proposals

Reverse engineer a
technical framework
(bottom-up) PDM

Check the input quality
(consistency, completeness)

Stepwise transformation
process (top-down)

Systematic transformation
definitions

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

P. André — MEDI 2021

=
N

Step 2 A structuring frame

New vision
* Refinement AND Mapping Frameworks
High quality ready to use
technical solutions
model frameworks

Refining control models

mapping

code

* Reverse engineer frameworks
to enable mapping binding

App model Framework model

o
N
o
~
©
—_
©
P
2
[}
§e]
o
P
|
NO]
—
5e]
c
<<
M

MT

e Keep the model vision

* Everything is model (M2M) Code model n?mngamework

(except the last M2T to code source)

—
[y
w

|

Step 2 A structuring frame

Step1 - issues Step 2 - proposals
Logical model (PIM) P_DM
Architecture
Model
T <~ Reverse engineer a
technical framework
Deployment model Tﬁ Middleware (bOttom_Up) PDM
Model
12 <~ Check the input quality
(consistency, completeness)
Tapping
Component model é Communication
Model
I3 <~ Stepwise transformation
process (top-down)
QOP model Tﬂh Frameworks

<~ Systematic transformation

T4 definition

Program model —_ Libraries

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

P. André — MEDI 2021

[N
S

More Automation in MDD
Outline

Introduction
<~ Contribute to rationalize the development

process by a structuring frame

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

Step 1 MDD practice

Step 2 Structuring frame

Step 3 Implementation and validation

< First milestones

P. André — MEDI 2021

* Conclusion

[N
92

Step 3 Implementation and validation

First milestones ol model) e S
/ T Model =
Deploym‘gnt model s Middleware é
e Systematic definitions of transformations . | — 4"
e T2,7T3,T4 (guidelines for T1) comparentmodel = B <
| / g

* Model transformation experimentations oorme =5 raneo

. . i /
e State-machine transformations v
Program model — Libraries

(UML/Java profile) - ATL
e Java code generation - Papyrus

* PDM abstraction and adaptation(T4)

 Reverse-engineering Lejos (Modisco, Agilel)
e APl Mapping by Adapter Pattern (ATL)
e Communication primitives (API)

—
N
o
~N
o
L
=
I

w

| .
o

c
<
o

=
0))]

<~ Details in the paper
and appendix

Refining Automation System Control with MDE
Outline

Introduction
<~ Contribute to rationalize the development

process by a structuring frame

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

Step 1 MDD practice

Step 2 Structuring frame

Step 3 Implementation and validation

P. André — MEDI 2021

* Conclusion

[N
~N

Conclusion model <,

e Variety (domains, frameworks, development practice)

Summary -
e Automated MDD is required for “low cost” software =
development & maintenance ¢ é

* The problem remains thorny code g
G

$

* Tool support not mature enough (Transformation on the shelf)

Proposals
e Generic process of 4 macro-transformations
e Systematic definition

e Separation of concerns
e PDM abstraction reverse engineered
e uTransformation implementation (5 %)

e UML Refinement
 PDM adaptation

—
N
o
~N
o
L
=
I

w

| .
o

c
<
o

=
(0]

Conclusion BN
Limits & Open issues — —

()]
()]
* High-level abstractions and transformations “ ““- =
e Parallelism in the lower level transformation” §
* |dentify the automated/manual parts (GUI) %
* Applicability scope & scalability f
: . Ambitious project =
Requirements - repositories of
\ %
 PDM (framework providers) [
* TOST (transformation providers) Al
Perspectives

* Lejos PDM reverse engineering (contd)

—
N
o
~N
o
L
=
I

w

| .
o

c
<
o

e Communication PDM (contd)
* Full T4 implementation

=
(o)

* Apply a systematic four-step process to the case study

Collaborative contributions are welcome

Thanks for your attention

More Automation in Model Driven
Development

A two-track transformation process

T
https://ev3.univ-nantes.fr/ '

()
()
=
1S
=
©
=
©
S
©
s
=
<
(O}
| .
©
=

P. André — MEDI 2021

N
o

