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Background I: compression in DBMSes

Types [ABH13, HAB09]:
• Light-weight

• Heavy-weight
Goals:

• Speed up query by reducing disk read time

• Reduce data volume on disk
Benefits in column-store:

• One attribute — one data type

• Encode multiple elements at a time using SIMD
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Background II: compression schemes
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Figure 1: Compression implementing approaches, adapted from [ZHNB06]
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Background III: compression in column-stores

Pioneers of modern column-stores: light-weight (RLE, FoR,
differential, etc) algorithms superior to heavy-weight (BZIP, ZLIB).

Reasons:
• costlight(decoding_effort) + costlight(disk_read) <

costheavy (decoding_effort) + costheavy (disk_read)

• other benefits: operating on compressed data directly,
cache-friendliness, etc

But what now? Fifteen years have passed — time to reevaluate:
• CPU, RAM, and disk performance have considerably advanced;

• novel compression algorithms have appeared;

• SIMD-enabled versions of existing algorithms have appeared.
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Research questions

• RQ1: Are heavy-weight compression schemes still
inappropriate for disk-based column-stores?

• RQ2: Are new light-weight compression algorithms better than
the old ones?

• RQ3: Is there a need for SIMD-employing decompression
algorithms in case of a disk-based system?
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Considered compression methods

• Light-weight:
• Regular: PFOR [ZHNB06], VByte

• SIMD-enabled: SIMD-FastPFOR [LB15],
SIMD-BinaryPacking [LB15]

• Heavy-weight:
• Brotli [AFF+18]
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PosDB: overview [CGG+18]

A distributed disk-based column-store for research purposes:

• Relies on Volcano block-based iterator
model.

• Columnar: operators exchange not only
data, but also positions (PosDB).

• Disk-based: data >> main memory.

• Distributed: has send & receive operators.
Not mediator-based, but “true”
distribution of data and queries.

• Parallel: any operator sub-tree can be
executed in a separate thread.
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PosDB: query plans

DataSource(s_region) DataSource(lo_partkey) DataSource(p_category)

Filter JoinRead(lo_partkey) Read(p_partkey)

JoinRead(s_suppkey) Read(p_partkey)

Read(lo_orderdate) Read(d_datekey)

DataSource(d_datekey)

Filter

SELECT	sum(lo_revenue),	d_year,	p_brand1
FROM	lineorder,	date,	part,	supplier
WHERE				lo_orderdate	=	d_datekey
					and	lo_partkey	=	p_partkey
					and	lo_suppkey	=	s_suppkey
					and	p_category	=	'MFGR#12'
					and	s_region	=	'AMERICA'
GROUP	BY	d_year,	p_brand1
ORDER	BY	d_year,	p_brand1;
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Figure 4: Query plan example
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PosDB: file formats
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PosDB: access to compressed data
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Figure 6: Compressed page receive in case it was not cached
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Configuration

Experiments were run with:
• PosDB v0043bba9, single-node configuration, buffer manager

16000 pages (1 GB)

• Hardware: Inspiron 15 7000 Gaming(0798), 8GiB RAM,
Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz,
TOSHIBA1TB MQ02ABD1

• Software: Ubuntu 20.04.1LTS, 5.4.0-72-generic, g++ 9.3.0
We used Star Schema Benchmark with Scale Factor 50 (16 GBs).
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Evaluation I: compression rates

Figure 7: Compression time (Seconds)

Figure 8: Compressed column sizes (Gigabytes)
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Evaluation II: run time performance

Figure 9: System run time break down for “parallel” scenario (Sec.)

Figure 10: System run time break down for “sequential” scenario, (Sec.)
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Evaluation III: performance in depth

Figure 11: IO thread action breakdown (Seconds)

Figure 12: Total volume of data read by query (Gigabytes)
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Conclusion

• RQ1: Are heavy-weight compression schemes still
inappropriate for disk-based column-stores?

• Largely yes. Loses to light-weight approaches, but still can give
20% speed improvement over the uncompressed case. Makes
sense to use them to save disk space, if data is static and
long-living.

• RQ2: Are new light-weight compression algorithms better than
the old ones?

• We can’t definitely conclude that there is progress (beneficial
to DBMSes) in light-weight compression schemes, aside from
the appearance of SIMD-enabled versions.

Also, VByte is BAD.

• RQ3: Is there a need for SIMD-employing decompression
algorithms in case of a disk-based system?

• Yes, since decompression happens in a dedicated thread.
Relative decompression costs are still high.
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