
Revisiting Data Compression in Column-Stores

Alexander Slesarev, Evgeniy Klyuchikov, Kirill Smirnov, George Chernishev
{alexander.g.slesarev,evgeniy.klyuchikov, kirill.k.smirnov, chernishev}@gmail.com

Saint-Petersburg University, Saint-Petersburg, Russia

MEDI 2021
June 23, 2021

1/16



Background I: compression in DBMSes

Types [ABH13, HAB09]:
• Light-weight

• Heavy-weight
Goals:

• Speed up query by reducing disk read time

• Reduce data volume on disk
Benefits in column-store:

• One attribute — one data type

• Encode multiple elements at a time using SIMD

2/16MEDI 2021



Background II: compression schemes

Buffer Manager

Decompress

CPU

Memory

project
select
scan

Cache

(a) I/O-RAM

Buffer Manager

Decompress

CPU

Memory

project
select
scan

(b) RAM-CPU

Figure 1: Compression implementing approaches, adapted from [ZHNB06]

3/16MEDI 2021



Background III: compression in column-stores

Pioneers of modern column-stores: light-weight (RLE, FoR,
differential, etc) algorithms superior to heavy-weight (BZIP, ZLIB).

Reasons:
• costlight(decoding_effort) + costlight(disk_read) <

costheavy (decoding_effort) + costheavy (disk_read)

• other benefits: operating on compressed data directly,
cache-friendliness, etc

But what now? Fifteen years have passed — time to reevaluate:
• CPU, RAM, and disk performance have considerably advanced;

• novel compression algorithms have appeared;

• SIMD-enabled versions of existing algorithms have appeared.

4/16MEDI 2021



Research questions

• RQ1: Are heavy-weight compression schemes still
inappropriate for disk-based column-stores?

• RQ2: Are new light-weight compression algorithms better than
the old ones?

• RQ3: Is there a need for SIMD-employing decompression
algorithms in case of a disk-based system?

5/16MEDI 2021



Considered compression methods

• Light-weight:
• Regular: PFOR [ZHNB06], VByte

• SIMD-enabled: SIMD-FastPFOR [LB15],
SIMD-BinaryPacking [LB15]

• Heavy-weight:
• Brotli [AFF+18]

6/16MEDI 2021



PosDB: overview [CGG+18]

A distributed disk-based column-store for research purposes:

• Relies on Volcano block-based iterator
model.

• Columnar: operators exchange not only
data, but also positions (PosDB).

• Disk-based: data >> main memory.

• Distributed: has send & receive operators.
Not mediator-based, but “true”
distribution of data and queries.

• Parallel: any operator sub-tree can be
executed in a separate thread.

row1
row2
row3

row1
row2
row3

row1
row2
row3

T1 T2 T3

3
2
1 2

1
3

T1 T2
3
2
3

T3

Join Index

Figure 2: Example of join index

102 first "A"
103 second "C"

105 nine "C"

Figure 3: Example of tuple
representation

7/16MEDI 2021



PosDB: query plans

DataSource(s_region) DataSource(lo_partkey) DataSource(p_category)

Filter JoinRead(lo_partkey) Read(p_partkey)

JoinRead(s_suppkey) Read(p_partkey)

Read(lo_orderdate) Read(d_datekey)

DataSource(d_datekey)

Filter

SELECT	sum(lo_revenue),	d_year,	p_brand1
FROM	lineorder,	date,	part,	supplier
WHERE				lo_orderdate	=	d_datekey
					and	lo_partkey	=	p_partkey
					and	lo_suppkey	=	s_suppkey
					and	p_category	=	'MFGR#12'
					and	s_region	=	'AMERICA'
GROUP	BY	d_year,	p_brand1
ORDER	BY	d_year,	p_brand1;

Aggregate

Sort

To user Operator Reader Operator
internals

Join

remote accesslocal access

... Tuples

Columns

Figure 4: Query plan example

8/16MEDI 2021



PosDB: file formats

Page size

Pa
ge

In
de

x

H
ea

de
r

Bu
ffe

r

Page size Page size

(a) Uncompressed file

Offset 1
Offset 2

Pa
ge

In
de

x

H
ea

de
r

Bu
ffe

r

Offset 3

(b) Compressed file

9/16MEDI 2021



PosDB: access to compressed data

AccessMethod

PageId IOManager

ValBlockDecode

PartitionFileBuffer Manager

StorageSystem

New
objects

Changed
objects

Data
access

Uncompressed 
page

Figure 6: Compressed page receive in case it was not cached

10/16MEDI 2021



Configuration

Experiments were run with:
• PosDB v0043bba9, single-node configuration, buffer manager

16000 pages (1 GB)

• Hardware: Inspiron 15 7000 Gaming(0798), 8GiB RAM,
Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz,
TOSHIBA1TB MQ02ABD1

• Software: Ubuntu 20.04.1LTS, 5.4.0-72-generic, g++ 9.3.0
We used Star Schema Benchmark with Scale Factor 50 (16 GBs).

11/16MEDI 2021



Evaluation I: compression rates

Figure 7: Compression time (Seconds)

Figure 8: Compressed column sizes (Gigabytes)

12/16MEDI 2021



Evaluation II: run time performance

Figure 9: System run time break down for “parallel” scenario (Sec.)

Figure 10: System run time break down for “sequential” scenario, (Sec.)

13/16MEDI 2021



Evaluation III: performance in depth

Figure 11: IO thread action breakdown (Seconds)

Figure 12: Total volume of data read by query (Gigabytes)

14/16MEDI 2021



Conclusion

• RQ1: Are heavy-weight compression schemes still
inappropriate for disk-based column-stores?

• Largely yes. Loses to light-weight approaches, but still can give
20% speed improvement over the uncompressed case. Makes
sense to use them to save disk space, if data is static and
long-living.

• RQ2: Are new light-weight compression algorithms better than
the old ones?

• We can’t definitely conclude that there is progress (beneficial
to DBMSes) in light-weight compression schemes, aside from
the appearance of SIMD-enabled versions.

Also, VByte is BAD.

• RQ3: Is there a need for SIMD-employing decompression
algorithms in case of a disk-based system?

• Yes, since decompression happens in a dedicated thread.
Relative decompression costs are still high.

15/16MEDI 2021



References

Daniel Abadi, Peter Boncz, and Stavros Harizopoulos.
The Design and Implementation of Modern Column-Oriented Database Systems.
Now Publishers Inc., Hanover, MA, USA, 2013.

Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert
Obryk, Zoltan Szabadka, and Lode Vandevenne.
Brotli: A general-purpose data compressor.
ACM Trans. Inf. Syst., 37(1), December 2018.

G. A. Chernishev, V. A. Galaktionov, V. D. Grigorev, E. S. Klyuchikov, and K. K.
Smirnov.
PosDB: An architecture overview.
Programming and Computer Software, 44(1):62–74, Jan 2018.

Stavros Harizopoulos, Daniel Abadi, and Peter Boncz.
Column-oriented database systems, VLDB 2009 tutorial., 2009.

D. Lemire and L. Boytsov.
Decoding billions of integers per second through vectorization.
Softw. Pract. Exper., 45(1):1–29, January 2015.

M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression.
In ICDE’06, pages 59–59, April 2006.

16/16MEDI 2021


