
Aspect-Oriented Model-Based
Testing with

UPPAAL Timed Automata
Jüri Vain, Leonidas Tsiopoulos,

Gert Kanter

Tallinn University of Technology,

Estonia

Model-based testing (MBT)

• Model-based conformance testing is a testing approach where
• models specify the expected behavior of the System Under Test (SUT)

• test goal can be specified either as set of constraints (on model execution paths/data) or a
separate state machine composed with the SUT model.

• Advantages of MBT
• automatic (online/offline) test generation

• verification of the test correctness and optimality

• Easy adjustment when SUT or its requirements change

Why MBT methods need improvement?

• Drawbacks of MBT:
• Manual model construction is time consuming and error prone process

• Model construction needs theoretical knowledge and experience

• Large models are out of human comprehension

• Unstructured models complicate error tracking

• Most of model verification and test generation tools have limited scalability

• MBT community has suggested various test modularization approaches to overcome
drawbacks: OO, program slicing, design viewpoints, etc.

• Our contribution – introduce modularity to MBT via aspect-oriented modelling
(AOM)

Aspect-oriented modelling

• Base model - represents the core functionality of
the system

• Advice model represent a crosscutting concern

• Weaving is composing a base model with the
advice model via weaving adapter (weaver).

• Join points are model fragments in the base model
to which an aspect can be woven.

• Pointcut is the set of join points and conditions
under which an advice can be woven.

• Woven model is composition of base and (possibly
several) advice model(s).

Aspect-oriented modelling with Uppaal TA

• Uppaal TA (UTA) is a closed network of extended timed automata (processes) composed by CCS type
synchronous parallel composition.

• Join points and weaving adapters in UTA

ǁ ǁ

Advice model

Base model &
Join point

a) Location join point b) Edge join point

AO test coverage criteria

• The AO test coverage categories are:
- aspect coverage,
- join point coverage,
- advice path coverage,
- advice element coverage.

• All categories have strong and weak forms.

• Example:
• strong join point coverage (SJPC): given an aspect Ai all of its join points must be covered by test runs
• SJPC coverage expressions in TCTL:

E forall (j : int[1, m]) R(i, j),

where
E – TCTL temporal operator “eventually“
R(i) – predicate that evaluates true in the model when j-th join point of aspect i is traversed

Example: Home Rehabilitation System (HRS)
Base model

Advice model

ǁ

Join point

Weaver

Join point label

T[1]=true

Strong JP coverage query:

E forall (j : int[1, 1]) T[1] && Patient.Done

• Off-line test generation complexity = witness trace generation complexity by MC

• Time complexity of model checking TCTL formula  over TA M, with clocks x in 
and the number of aspects m in M :

O(m, | |) =

where

• C =
• cx – max time bound of clock x in TCTL formula 

• n – number of clock regions

• L – set of symbolic states of M

Analytical validation: test generation effort



Analytical validation: test generation effort

Observation

Any reduction of the model symbolic state space
provides exponential reduction in model checking
complexity aka test generation complexity.

- effort of generating test T that satisfies constraint i

Corollary:

E(. ,)

〚M B  M Aj〛- operational semantics of the base model M B augmented with advice M Aj

where

Experimental validation

Generating tests that cover selected paths in the advice models

• Test path selection condition:

𝐸♢ 𝑓𝑜𝑟𝑎𝑙𝑙 𝑘: 𝐾 𝑓𝑜𝑟𝑎𝑙𝑙 𝑖: 𝐼 𝑇 𝑘 𝑖 &&𝑀𝑜𝑑𝑒𝑙. 𝑠𝑡𝑜𝑝

where
𝑇 is a Boolean array where its element 𝑇 𝑘 𝑖 is updated to true
when the i-th path of k-th advice is traversed in the model.

Note.
The comparison is made with weakly bisimilar non-AO models.

21

43

65

0

20

40

60

80

100

120

140

1 2 3

0

10

20

30

40

50

60

70

T
ra

c
e

g
e
n
e
ra

ti
o
n

ti
m

e
[s

]

L
e
n
g
th

o
f

te
s
t

s
e
q
u
e
n
c
e

Time dependency

21

43

65

.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

400000.0

450000.0

1 2 3

0

10

20

30

40

50

60

70

V
ir

tu
a
l
m

e
m

o
ry

u
s
e
d

[K
B
]

L
e
n
g
th

o
d

te
s
t

s
e
q
u
e
n
c
e

Memory usage

AO test model
Non-AO test model

[Experiment #]

[Experiment #]

Conclusions

• We gave interpretation of generic AOM concepts in terms of UTA formalism

• Provided taxonomy of AOT coverage criteria that improve the traceability of bugs

• Defined AOM correctness properties in terms of TCTL model checking query
templates.

• Defined AO test purpose feasibility conditions that can be verified by Uppaal
model checker

• Demonstrated both analythically and experimentally that
• AOM simplifies test purpose specification and model construction effort

• reduces the model-based offline test generation complexity exponentially.

•Thank you!

